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1  Introduction  
The purpose of this document is to describe all the results of the sensor 
platform and models including the v erification and validation results of task 

2.2 to task 2.5 from  the first cycle.  
As describe d in the DOW the first cycle aims at develop ing  a framework for 

later integration of all enablers by defining interfaces for data exchange and 
communication. This framework serve s as an initial specification of the 

system archi tecture ( Enabler 7). At the end of the initial requirement 
definition milestone M1 was reached. The technologies for Enabler 1 ï6 will 

be researched along the requirements and first versions of software 
components and will be implemented by taking into acco unt the interface 

definitions. For the first cycle we perform exploration, validation and 
verification on a component level. For the current milestone M2 the current 

state of all exploration, validation and verification activities is documented 
with  respec t to the models in this document. This document will then be used 

as a starting point for the subsequent cycle. In parallel , we setup the 

baseline vehicles  to be used for comparative evaluation in the upcoming 
cycle s 2 and  3. 

 
The document is divide d in tw o main sections :  In the following section 

ñAutomate driver, vehicle and situation modelling concept ò we present the 
status of the WP2 development and tests performed during the first cycle as 

well as those planned for the two next cycles.  The second main section 
ñInstantiation of the Automate platformò is dedicated to the instantiation of 

the sensor and communication platform an d the current state of 
development of the driver, situation and environment models that will then 

be later integrated into th e different demo nstration vehicles .  
 

2  Automate Driver, vehicle and situation modelling 
concept  
 

The Automate driver, vehicle and situation modelling concept is targeted to 

the implementation of the  technical enablers 1, 2 and 3.  

2.1  Enabler 1: Sensor and com munication platform  

As described in the DOW t he objective s of enabler 1 are to use a nd advance 
existing sensor and V2X communication technology provided by the 

consortium partners as a technological basis to realize the o bjective 2  
(Develop solutions to m onitor, understand and  anticipate the driver, the 

vehicle and the traffic situation) .  
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2.1.1  Generic requirements of the Automate sensors  
The three  scenarios targeted within Automate require  different set s of 

sensors  based on the following ones:  
 

¶ Global positioning Sensing (GPS)  
¶ Digital map  

¶ Environmental sensing  
¶ Driverôs state sensor  

¶ Communication V2X, V2V   

¶ Vehicle data  
¶ Ego-vehicle pose and motion  

¶ Communication protocol  
 

All sensors must be calibrated to a global/local coordinate system and use 
the same  clock. All provided sensor data must provide information about 

measurement uncertainties. Sensor data can be useful for visualization or 
evaluation of situation model. The situation model doesnôt need a direct 

access to this layer since data needed for si tuation modeling are provided by 
the object layer. Therefore the object layer must be able to forward sensor 

data to the situation layer.  

2.1.2  Global Positioning Sensing  

This sensor must provide at least the ego -vehicle pose and motion as well as 
UTC time. The UTC time can be used for synchronization  

2.1.3  Digital map  

2.1.3.1  Global Map  

This map contains information about the road topology as well as the 

t ransient dynamic data. This information can be useful for situation 
prediction.  

 
1.  Global map topology: road -graph  

2.  Transien t Dynamic Data (e.g. Traffic Jam, Construction, Blocking, 
average travel time)  

2.1.3.2  High accurate digital map  

This map contains high -accurate information about road and infrastructure. 

This data can be recorded offline and/or detected during driving. A link to the 
global map must be available  

 
1.  Road/Lane (Marking, Curb, stop line, etc.)  

2.  Roadside infrastructure (Traffic sign, Traffic light, etc.)  
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2.1.4   Environmental  sensing  

The environmental data include the road, the objects (static and dynamics) 

and the driver state (internal scenario).  These different classes are described 
in the following paragraphs.  

2.1.4.1  Road data  

Road data is necessary to predict the future evolution of the traffic situation, 

as a necessary input for driver modelling (T2.3), vehicle and situation 
model ling (T2.4), and online risk assessment (T3.3). Road data can be 

detected or extracted from the high accurate digital map.  

 
1.  Road/Lane marking  

2.  Curb  

3.  Traffic light and signal  

2.1.4.2  Static Obstacles  

All detected objects must be related to a unique/global coordinate system as 
well as have the same clock. Estimated data must provide uncertainties.  This 

model contains static detected obstacles. Obstacles can be classified or not  
by three steps . 

 

1.  (Semantic) Occupancy Grid Map s 
2.  Stixels . A stixel is a vertical stick defi ned by its 3D position relative to 

the camera . Each stixel limits the free space and approximates the 
object boundaries.  

3.  Elevation/Drivable Map s 

2.1.4.3  Dynamic objects  

Information about dynamic objects, assumed to represent other traffic 
participants, are necessary  to predict the future evolution of the traffic 

situation, as a necessary input for driver modelling (T2.3), vehicle and 
situation modelling (T2.4), and online risk assessment (T3.3). This model 

contains a list of detected, tracked and fused dynamic object s with the 
attribute:  

 
1.  Position  

2.  Motion velocity and acceleration  

3.  Size  
4.  Semantic class  



AutoMate Automation as accepted and trusted TeamMate to enhance  
traffic safety and efficiency 

 

30/06/2017  Named Distribution Only  
Proj. No: 690705  

Page 8 of 45  

 

2.1.5  Driverôs state sensor  

The driverôs state sensor is a vision based system which processes the video 

flow of the driverôs face provided by one camera. From the image analysis 
the system detects and track facial features (eyelid, eye corners, mouth, 

etc.). The dynamics of these features are then analysed  to determine the 
following driverôs state models: 

 
1.  Drowsiness  

2.  Visual Inattention/Distraction  

3.  Cognitive distraction  
 

I n cycle 1 we have defined the sensor output according to the Automate 
requirements, ported and adapted the existing algorithms, a specific 

automate HW (camera, lights, processing unit) has been defined.  
 

For cycle 2 the sensor HW will be finalized accordin g to the requirements the 
different demonstration vehicle. The up - to -date models will then be 

integrated. More detailed sensor specifications are available in the document 
AutoMate_WP2_Driver_State_CAF_01.pdf  

2.1.6  V2X ( V2V and V2I) communication  

In the AutoMat e project, it is taken advantage of Vehicle - to -Vehicle and 

Vehicle - to - Infrastructure communication, which are called V2X together. In 
the first case, different  V2V capable vehicles are communicating using 

wireless, RF connection. In the latter case, vehicl es communicate  with  the 

infrastructure (e.g. traffic lights and signs, lamp -  or utility poles, etc.). This 
communication between the entities is temporary, since the vehicles are in 

motion  and  often with high speeds . Therefore the connection between them 
is not sustainable. V2X is similar to a mobile ad hoc network;  however , in 

this case the network elements are the vehicles and the road side elements 
(e.g. lamp post).  

 
The benefit of V2X is to share and broadcast information between the 

vehicles. These inf ormation consist of frequently transmitted beacon 
message s (who I am, what is my current geo -position and speed, where I 

am heading etc.), warning messages (e.g. accident, oil spill on the road, 
traffic jam ahead etc.), environmental messages (e.g. heavy r ain, frozen 

road, heavy cross -wind etc.).  
 

In the EU the accepted standard for V2X is the GeoNetworking protocol  
(Ziya Cihan & Ali Gokhan Yavuz, 2013). It provides the above mentioned 
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messages based different facilities and also it handles that these messa ges 
are broadcasted in the given geo -area, where they are relevant.  

 
From V2X technology, the beacon messages will be mostly used in AutoMate 

project to allow the TeamMate car to sense, predict and react to other V2V 
capable cars in an extended area, and also to enhance the sensor fusion or 

decision making procedure. Further  usage of V2X is required for the case 
that the infrastructure sends useful information about its current condition 

and events, e.g. a traffic sign that is able to transmit map informat ion about 

the oncoming roundabout.  

2.1.7  Vehicle data via in - vehicle buses  

Vehicle data is required to compute the vehicle trajectory:  
 

1.  Speed  
2.  Yaw rate  

3.  Steering wheel Angle  

2.1.8  Ego - Vehicle pose and motion  

High -quality data of the ego -pose and ïmotion is necessary to derive the 
spatial relation between the ego -vehicle, other traffic participants, and the 

road data, as a necessary input for driver modelling (T2.3), vehicle and 
situation modelling (T2.4), and online risk assessment (T3.3). The ego -pose 

and motion consist  of:  
 

1.  Position  

2.  Orientation  

3.  Motion (velocity and acceleration) according to a global coordinate 

system.  

2.1.9  Communication protocol  

The communication protocol between the AutoMate sensor systems is a set 
of libraries and tools for message passing and data mars halling, targeted at 

real - time systems where high -bandwidth and low latency are critical. It is 
specific to each demo car. Still in order to achieve a reliable and efficient 

exchange of data between the sensors, the vehicle and the models system 
the commun ication protocol should fulfil  a minimal set of requirements :  

 
¶ Real time  

¶ Low - latency inter -process communication  
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¶ Efficient broadcast mechanism using UDP Multicast  

¶ Type -safe message marshalling  

¶ User - friendly logging and playback (lcm - logger and log -player)  

¶ No centralized "database" or "hub" ï peers communicate directly  

2.2  Enabler 2: Driver Modelling and Learning  

As described in the DOW the objective of enabler 2 is  to build a probabilistic 
driver model. The model will describe the dynamic evolution and statis tical 

relationships between the driverôs state, behaviour and environment and will 
enable to infer and predict the driver status, behaviour as well as intentions.  

 
The general connection between situation - , vehicle - , and driver -models is 

depicted in  Figure 1. The sensor and communication platform collects and 
enriches the available sensor information and passes this information to a 

component for situation understanding which maintains the situat ion -model 
as a current representation of the TeamMate vehicleôs belief about the world. 

The information is further enriched by the situation understanding to provide 
a semantic classification for the situation model. The resulting beliefs about 

the current  state of the world are passed 1) to the situation prediction, which 

utilizes a set of vehicle models to estimate likely temporal and spatial 
evolution of the traffic scene, and 2) to the driver monitoring, which uses a 

set of driver models to estimate the  current state of the driver.  
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Figure 1 : Informal description of the information flow for situation - , vehicle -  

and driver - models.  

 
 

2.2.1  DriveGOMS  

In the first cycle of AutoMate, we have continued the work on our driving 

task analysi s framework, DriveGOMS. The original goal of the framework is 
make driver modelling for HMI design and evaluation easier. Within 

AutoMate, we plan to not only address these aspects by modelling the 

human -machine interaction, but also support the work on en abler 2 
(Probabilistic Driver Modelling  and Learning) by providing insight into the 

structure of human behaviour.  
 

DriveGOMS applies the principles of the GOMS task analysis approach to the 
driving task (Card, Moran & Newell, 1983). This means a decomposi tion of 

the driving task into goals, operators, and methods. Goals are what 
structures the task, and can be derived e.g. from thinking aloud protocols. 

Operators can partially be measured, or derived from task necessities. 
Methods are a collection of opera tors and be viewed as driving manoeuvres. 

The resulting models can be used to predict execution times of driving 
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activities, as a formal description of empirical driving data, or to define 
normative models of driving activities.  

 
The purpose of the approac h is to a) describe existing data, and to b) model 

unknown situations. The advantage of modelling existing data in this way is 
to have an un -ambiguous way to describe driving behaviour on all 

psychologically relevant levels. Since there are times attached to the 
operators, a model of a behavioural sequence (such as an interaction with 

the TeamMate car) predicts a time for this sequence.  

 
In cycle 1, we specifically have worked to gain a better understanding of 

goals and operators based on empirical data fro m simulator driving studies. 
To this end, we used data acquired previously, and used this to hypothesize 

and validate goals and operators. This work included a lot of the necessary 
data pre -processing, such as data fusion (e.g. driving data and eye trackin g 

data). We have produced lists of goals and operators that can now be used 
to model driver -vehicle - interactions.  

 
In cycle 2, we will support the empirical analysis of the studies conducted 

within WP2 with our framework. That means that we will model the  driver 
behaviour and driver interaction with an automation based on the empirical 

data, and use this knowledge to make suggestions regarding the design of 
the TeamMate car.  

 

2.2.2  Driver Intention Recognition BadMob  

In Deliverable D2.1 ñMetrics and Experiments for V&V of the driver, vehicle, 

and situation models in the 1 st  cycleò, we introduced Bayesian Autonomous 
Driver Mixture -of -Behaviors (BAD MoB) models and Driver Intention 

Recognition (DIR) models as a starting point for a coherent probabilistic 
architect ure for intention recognition and behavior prediction.  

 
In the following, random variables will be denoted by capital letters, such 

asὢ, ὣ, ὤ, and we will use corresponding lower -case letters ὼ, ώ, ᾀ to denote 

specific values taken by such variables. The set of values, a random variable 
ὢ may take, will be denoted by 6ÁÌὢ. Sets of variables will be denoted by 

bold capital letters, e.g., ╧ ὢȟȣȟὢ , and we will use lower -case bold 

letters ● ὼȟȣȟὼ  to denote specific values taken by such sets. Dealing 

with temporal models, the time line is assumed to be discretized into time 

slices with a constant time granularity of ɝὸ. Time slices are indexed by non -

negative integers, and we use ὢ to repr esent the instantiation of a variable 

ὢ at a time ὸ. A sequence of variables  ὢ, resp. sets of variables ╧, from time 
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Ὥ to Ὦ will be denoted by ὢȡ , resp. ╧ȡ. Lastly, probability density functions 

(PDFs) and probability distributions (CPDs)  will uniformly be denoted by ὴȢ. 

 

Let ═ ὃȟȣȟὃ  denote a set of continuous and/or discrete random 

variables that represent the control actions of the human driver; ║

ὄȟȣȟὄ  denotes a set of discrete variables that represent different 

behavio rs and intentions on the maneuvering layer, ╟ ὖȟȣȟὖ  denotes a 

set of continuous and/or discrete random variables that represent the 

hypothetical perceptual input of the human driver. Additionally, let ǧ denote 
a delay between perception and action due to perception and reaction times. 

A BAD MoB model defines a (conditional) Dynamic Bayesian Network that 
specifies the (conditional) probability density function ὴ═ȡȟ║ȡȿ▬ ȡ  for 

any number of Ὕ time slices as  

 

ὴ═ȡȟ║ȡȿ▬ ȡ ὴ═ȟ║ȿ▬ ὴ═ȟ║ȿ═ ȟ║ ȟ▬ Ȣ 

 

For the creation of the DIR model, the dependence of behaviors and action 
variables on the past perception was replaced by a more traditional sensor 

model. Let ╞ ὕȟȣȟὕ  denote  a set of continuous and/or discrete random 

variables that represent the observations of the current traffic situations, a 
DIR model would therefore model the joint density distributions over actions, 

behaviours and observations over an arbitrary length Ὕ ρ as:  

 

ὴ═ȡȟ║ȡȟ╞ȡ ὴ╞ȿ═ȟ║ ὴ═ȟ║ ὴ╞ȿ═ȟ║ ὴ═ȟ║ȿ═ ȟ║ Ȣ 

 

Following this short reminder, this deliverable will introduce a template for 
probabilistic driver models developed in AutoMate. This template is assumed 

to be adapted to the different scenarios resp. demonstrators based on 
dataset obtained in these scenarios.  

 
For the probabilistic driver models in AutoMate, we start with the idea of BAD 

MoB models, where we replace the perception variables  ╟, by scenari o-

dependent subsets of variables ╢ provided by the situation -model  (c.f., 

Section  2. 3. 2), representing necessary information about the current 

situation, including  e.g., the state of the ego -vehicle, surrounding vehicles, 
and the future course of the road . We furthermore assume knowledge about 

the mode, either manual or autonomous driving, of the TeamMate car, 

represented by a binary variable ὓ, with 6ÁÌὓ ά ȟά . The resulting 
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probabilistic driver models define a CPD ὴ═ȡȟ║ȡȟ╢ȡȿὓ ȡ  for any number 

of Ὕ time slices as  

 

ὴ═ȡȟ║ȡȟ╢ȡȿὓ ȡ ὴ═ȟ║ȟ╢ȿὓ ὴ═ȟ║ȟ╢ȿ═ ȟ║ ȟ╢ ȟὓ ȟ 

 
with  

 
ὴ═ȟ║ȟ╢ȿ═ ȟ║ ȟ╢ ȟὓ ὴ║ȿ║ ȟ╢ ὴ═ȿ═ ȟ╢ ȟ║ ὴ╢ȿ╢ ȟ═ȟὓ Ȣ 

 

Here, the CPD ὴ║ȿ║ ȟ╢  models the formation of intentions and driving 

maneuvers/behaviors based on the current state of the traffic situation, 
ὴ═ȿ═ ȟ╢ ȟ║  models the selection of control actions for different 

intentions and behaviors based on the current state of the traffic situation, 

and  ὴ╢ȿ╢ ȟ═ȟὓ  models the evolution of the traffic situation dependent 

on the control inputs of t he human driver if in a manual mode:  

 

ὴ╢ȿ╢ ȟ═ȟὓ
ὴ╢ȿ╢ ȟ═ȟὓ ȟ ὓ ά

ὴ╢ȿ╢ ȟὓ ȟ ὓ ά
Ȣ 

 

This template is motivated by reasonable assumptions on the causal 

mechanisms. The formation of intentions and resulting  selection of behaviors 
is governed on the traffic situation, as perceived by the human driver. Resp., 

the selection of control actions will be guided by the underlying intentions 
and selected maneuvers/behaviors guided by the perception of the traffic 

sit uation. Lastly, the evolution of the traffic scene itself will directly be 
influenced by the selected control actions, but not by the driverôs intentions 

or behaviors, outside of the effects of control actions.  
 

The CPDs ὴ║ȿ║ ȟ╢  and ὴ═ȿ═ ȟ╢ ȟ║  will be estimated from 

multivariate time -series of human behavior traces obtained in the 
experiments planned for the first cycle (Section  2.2. 4.1 ).  The CPD 

ὴ╢ȿ╢ ȟ═ȟὓ  will reuse the algorithms developed for the prediction of the 

spatial and temporal evolution of the traffic scene.  

 
As an alternative, we will consider replacing ὴ║ȿ║ ȟ╢  by ὴ║ȿ║  and 

ὴ╢ȿ╢ ȟ═ȟὓ  by ὴ╢ȿ╢ ȟ║ȟ═ȟὓ  akin to DIR models.  

 
The goal of the probabilistic driver model in AutoMate is to maintain a belief 

state ὴ║ȟ═ȟ╢ȿ▄ȡȟὓ ά  at each time step ὸ over intentions resp. 

behaviors, control actions and the  world state, given all ñevidenceò ▄ȡ (the 

exact nature of evidence will be explained below) obtained by the TeamMate 
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vehicle up to the current point in time ὸ and under the assumption that the 

TeamMate vehicle is controlled by the human driver. The b elief state can 

then be further processed to derive information required for the different 

demonstrators. For the ULM demonstrator, the probabilistic driver model will 
provide a belief state over the current intentions and behaviors of the human 

driver as a means for selecting appropriate maneuvers to be performed 
autonomously by the TeamMate vehicle, e.g.:  

 

ὴ║ȿ▄ȡȟὓ ά ὴ║ȟ╪ȟ▼ȿ▄ȡȟὓ ά  Ὠ╪Ὠ▼

 

Ȣ 

 
For the VED and CRF demonstrator, under the assumption that the model 

captures the normative driving behavior of the human driver, the 
probabilistic driver model will provide an assessment of the current driving 

parameters and control actions of the human driver, e.g.:  

 

ὴ╪ȟ▼ȿ▄ȡȟὓ ά ὴ╫ȟ╪ȟ▼ȿ▄ȡȟὓ ά

╫ɴ 6ÁÌ║

Ȣ 

 
It remains to specify, what evidence is available at each time step to 

estimate the current belief state. We assume that the driver model has 
access to the current mode of the TeamMate vehicle ά , the  belief state over 

the state of the TeamMate vehicle ὴ╧ ȿ▫ȡ , the belief states over other 

traffic participants ὴ╧ ȿ▫ȡȟὭ ρȟȣȟά and the description of the 

environment around the TeamMate car provided e.g., by a map ὓ, provided 

by the  situation model.  

 
 

An important challenge is the incorporation of uncertain information provided 
by the situation model in the driver model. A first possibility to incorporate 

the information provided by the situation model is to discard the knowledge 

about uncertainty and just use the modes of each belief state as evidence. 
As such, at each time step ὸ, weôd have evidence about the current control 
actions ═ ╪, the current world state ╢ ▼, and the current mode of 

operation ά . We can use th is information to recursively obtain a belief state 

ὴ║ȿ▼ȡȟ╪ȡȟά ȡ   from a previously inferred belief state 

ὴ║ ȿ▼ȡ ȟ╪ȡ ȟά ȡ  in the following way:  

 



AutoMate Automation as accepted and trusted TeamMate to enhance  
traffic safety and efficiency 

 

30/06/2017  Named Distribution Only  
Proj. No: 690705  

Page 16  of 45  

 

ὴ║ȿ▼ȡȟ╪ȡȟά ȡ
ρ

ὤ
ὴ║ȟ╪ȟ▼ȿ▼ȡ ȟ╪ȡ ȟά ȡ

ᶿ ὴ║ȟ╪ȟ▼ȿ╫ ȟ╪ ȟ▼ ȟά ὴ╫ ȿ▼ȡ ȟ╪ȡ ȟά ȡ

╫ɴ6ÁÌ║

ὴ║ȿ╫ ȟ▼ ὴ╪ȿ╪ ȟ▼ ȟ╫ ὴ▼ȿ▼ ȟ╪ȟά ὴ╫ ȿ▼ȡ ȟ╪ȡ ȟά ȡ

╫ɴ6ÁÌ║

ȟ 

 
with  ὤ being a normalization constant:  

 

ὤ ὴ╪ȟ▼ȿ▼ȡ ȟ╪ȡ ȟά ȡ ὴ╫ȟ╪ȟ▼ȿ▼ȡ ȟ╪ȡ ȟά ȡ

╫ɴ6ÁÌ║

Ȣ 

 

This method is very efficient, but may be unsatisfactory, as weôre discarding 
any uncertainties about the information provided by the situation model.  

 
A potential method to incorp orate uncertainties in the evidence is uncertain 

or soft evidence . The basic idea is also known as Jeffreyôs rule and follows 
the idea to first define a model conditioned on the evidence and then 

average over the distribution of the evidence (Barber, 2012) . Let ╪ and ▼ 
denote the uncertain evidence for both the actions and states provided by 
the situation model. The inference scheme for the probabilistic driver model 

using soft evidence is given by:  
 

ὴ║ȿ╪ȡȟ▼ȡȟά ȡ ᶿ ὴ║ȟ╪ȟ▼ȿ╪ȡȟ▼ȡȟά ȡ  Ὠ╪Ὠ▼

ὴ║ȿ╪ȟ▼ȟ╪ȡȟ▼ȡȟά ȡ ὴ╪ȟ▼ȿ╪ȡȟ▼ȡȟά ȡ Ὠ╪Ὠ▼ȟ 

 

where we assume that  
 
ὴ║ȿ╪ȟ▼ȟ╪ȡȟ▼ȡȟά ȡ

ᶿ ὴ║ȟ╪ȟ▼ȿ╪ ȟ▼ ȟά ὴ╫ ȟ╪ ȟ▼ ȿ╪ȡ ȟ▼ȡ ȟά ȡ  Ὠ╪ Ὠ▼

╫ɴ 6ÁÌ║

 

 
and   

 

ὴ═ȟ╢ȿ╪ȡȟ▼ȡȟά ȡ ὴὃȿὥ

═ɴ

ὴὛȿίǿ

╢ɴ

ȟ 
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with ὴὢȿὼ  being given by the current belief in the situation model. 

Unfortunately, the resulting inference scheme requires the joint integration 

resp. summation over action variables ═ and state variables ╢ that cannot 

be simplified due to the model structure , which contrasts with potential 
simplification for the integration and summation over past action and state 

variables. As such, inference using uncertain evidence may turn out to be too 
costly for the context of AutoMate, which must be tested during the p roject.  

 
Another possibility, and the one weôll focus on first, is the use of unreliable or 

likelihood evidence (Barber, 2012). The basic idea is as follows. For each 
variable ὢᶰ═ȟ╢ we extend the model by a corresponding variable ὕ  and 

CPD ὴὕȿὢ . During runtime, we assume ὕ  to be observed and define the 

likelihood ὴέȿὢ  to equal the corresponding belief in the situation model. 

Let ╞ denote the set of all variables ὕ , we can now recursively obtain a 

belief state ὴ║ȟ═ȟ╢ȿ▫ȡȟά ȡ   from a previously inferred belief state 

ὴ║ ȟ═ ȟ╢ ȿ▫ȡ ȟά ȡ  in the following way:  

 
ὴ║ȟ═ȟ╢ȿ▫ȡȟά ȡ

ᶿ ὴ║ȟ═ȟ╢ȟ▫ȿ╫ ȟ╪ ȟ▼ ȟά ὴ╫ ȟ╪ ȟ▼ ȿ▫ȡ ȟά ȡ Ὠ╪◄ Ὠ▼◄

╫ɴ6ÁÌ║

ὴ▫ȿ═ȟ╢ ὴ║ȟ═ȟ╢ȿ╫ ȟ╪ ȟ▼ ȟά ὴ╫ ȟ╪ ȟ▼ ȿ▫ȡ ȟά ȡ Ὠ╪◄ Ὠ▼◄

╫ɴ6ÁÌ║

ȟ 

 
where  

ὴ▫ȿ═ȟ╢ ὴέȿὃ

═ɴ

ὴέȿὛ

╢ɴ

Ȣ 

 
Compared to the notion of soft evidence, likelihood evidence has the 

advantage that ὴ▫ȿ═ȟ╢  can be evaluated without the need to jointly 

integrate resp. sum over the current state and actions, making it much more 
efficient for performing inference s in real - time scenarios. It is to note 

however, that likelihood evidence works on a fundamentally different 
principle than soft evidence. Using soft evidence, weôd assume that the 

beliefs provided by the situation model are correct,  but uncertain. Likelih ood 
evidence on the other hand, will be fused into the prior beliefs of the model 

itself, only shifting the driver modelôs a-priori beliefs towards the beliefs 
provided by the information model. For now, the effects of using likelihood 

evidence are not tes ted, but will be analyzed for the next cycle.  
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2.2.3  Driver state model  

The driver state model aims to provide an indication about the physiological, 

behavioural and psychological state of the driver. The driverôs state model is 
a SW module, which provides the fo llowing the models:  Drowsiness, Visual 

attention and visual distraction, and Cognitive distraction (possibly, under 
investigation).  

 

2.2.3.1  Drowsiness  

Drowsiness is a state of reduced consciousness (or, near -sleep) due to sleep 

pressur e. The drive to sleep is primarily caused by increased activity of the 
sleep system, in combination with decreased activity of the arousal system. 

Somnolence or sleepiness can be caused by prior lack of sleep and/or 
circadian disturbance, and might be exac erbated by long periods o f 

inactivity/boredom.  
 

Note that for definition (and measurement) sake, there is a difference 
between drowsiness/sleepiness (due to sleep need) and fatigue (due to 

excessive exertion of mental effort).  
 

There are many problems related with drowsiness: low ered acuity in 
perception of driving events, reduced tasks performance, impaired 

judgement abilities, lower reaction, delay, etc. Moreover the risk of error is 
increased by the fact that drivers are mostly not able to make a reliable 

evaluation or acknowle dgement of their sleepiness level.  

 
Drowsiness is characterized by many physiological symptoms. The most 

mentioned in the literature are :  an increase of the blink duration, yawning, 
head leaning f orward, reduced eyelid opening , and eye gaze staring.  The 

dr iving behaviour is also affected. The driver show s difficulties to maintain an 
accurate trajectory. Vehicle drifting and swaying in the lane are symptoms of 

a significantly degraded drowsiness.  
 

The developed drowsiness model is mainly based on the increas e of the blink 
duration. The model output 4 drowsin ess levels correlated with the 

Karol inska Sleepiness Scale (KSS) ranging from alert to falling asleep  
(Boverie & Giralt, 2008) . Within Automate we will reinforce this diagnostic 

using facial or head behavi our. In cycle 1 the worked focused on head 
specific movement like leaning forward or backward to the head rest in a 

specific way . The achieved performance will guideline future works toward 

this head movement approach or toward specific facial behaviour  like talking 
or yawning.  
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These development s are supported by a drowsiness labelled data base of 15 
subjects driving in simulator conditions.  

  

2.2.3.2  Visual attention /distraction   

A driver is visually distracted when s/ he is not looking ahead at the road; his 
eye gaze is off the road. The underlying idea is that a driver who is visually 

distracted cannot be fully aware of the situation. But the contrary case is not 
true: a driver who is looking ahead is not nec essarily a ware of the situation;  

he could be drowsy or cognitively distracted.  

 
A visual  attention level is computed from the visual attention distribution 

(Visual Time Sharing, VTS) of the different areas of interest located inside 
and outside of the vehicle accor ding to the driving situation (Boverie & Cour, 

2011) . 
 

In cycle 1 basic visual distraction models based on the proportion of time the 
driver spends looking at the road have been integrated in the Automate 

algorithmic frame work. In cycle 2 they will be furt her improved by tuning 
the timings, and weights of the different areas observed by the driver.  Still 

the main line of improvement will be to improve the accuracy and the 
robustness of the eye/ head gaze provide d by the face tracker. This work is 

carried on within the development of the driverôs state sensor.  
 

2.2.3.3  Cognitive distraction  

Cognitive distraction can occur when attention is withdrawn from the 
processing of information necessary for the safe operation of a motor 

vehicle, when an individual's focus is n ot directly on the act of driving and 
his/her mind "wanders". Many non - related driving tasks like speech to text 

system, talking on a cell phone or talking to passenger may generate a 
certain level of cognitive distraction.  

 
Estimate the driverôs cognitive distraction is a very challenging tasks. The 

developed model will be based on indirect observations of non - related driving 
activities combined with a decreased visual scanning of the driving 

environment . The investigations  will start in cycle 2.  

2.2.4  Verificat ion and  Validation of Driver Models  

2.2.4.1  Driver Intention Recognition  

The first cycle for verification and validation on a component level is 

currently being performed by a joined study with the partners from ULM and 
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OFF. The study is being performed with 48 s ubjects driving the  Peter 
scenario on two driving simulators: one in ULM and the other one located at 

OFF. In the Peter scenario, the TeamMate car is driving on a rural road. A big 
vehicle, which in the validation scenario is a truck, reduces the capturing  

capabilities of different sensors of the car and therefor it is up to the driver to 
support the TeamMate car to decide about the correct point in time for that it 

is safe to initiate the overtaking manoeuvre. This interaction should be 
designed, following  the TeamMate approach. The driver and the vehicle work 

together as two teammates, where the vehicle still supports the driver as 

much as possible so the driver only needs to initiate the overtaking 
manoeuvre.  

 
For this first study the driver can initiate the overtaking based on taping the 

indicator or by pressing a button located on the touch screen of a centre 
touch panel. One of the goals is to figure out if there is a difference between 

these two interaction designs.  
 

Figure 2 and figure 3 show the exp eriment setups for both simulators. For 
the studies both simulators shared the same software setup and also the 

same road and traffic structure. During the slot the road (which is a 
secondary road with only one lane in each direction) changes between 

secti ons with flat parts and good sight to more curvy ones with forest 
sections that limit the frontal view of the driver to identify potential obstacles 

early. Finally , basic inner city sections are also part of the road track, but for 

this first study that fo cuses on the Peter scenario intersections are not 
relevant.  

 

 

 Figure 2 :  OFFIS driving simulator  
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Figure 3 :  ULM driving simulator  

 

Each subject had to drive three slots, taking around 30 minutes to drive. For 
two of the three slots the AutoMate car is driving in automated driving mode 

and therefor e the driver is mainly concerned with identifying the correct time 
to initiate an overtaking manoeuvre for those situations in that the AutoMate 

car cannot automatically overtake.  
 

In one slot each subject is driving completely without any automation 

involv ed. The data collected in this slot is on the one hand , the baseline for 
the AutoMate car and on the other hand , the training and validation data for 

the first version of the driver intention recognition component. Several 
variables will be recorded from t he simulator. Besides all driving variables 

from the ego vehicle (for example lateral and longitudinal acceleration) of all 
vehicles are recorded. All these data are needed to validate the driver 

intention model.  

2.2.4.2  Driver Situation Awareness Assessment  

Also  the situation awareness of the driver is explored as part of the same 
study. The subjectôs eyes are tracked based on remote eye-tracking cameras 

in the UML driving simulator and a head -mounted eye tracker that is used in 
the OFF driving simulator. While t he subjects are driving without 

interruptions for each slot, they pass certain identification points (i.e. flow 
points) that trigger specific situations (e.g. the slow vehicle to appear) or 

identify phases of an overtaking manoeuvre (e.g. left lane merge, overtake, 
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right lane merge). The eye tracking data is recorded for all subjects and all 
three slots and the gained data from the study is being explored on changes 

of subjectsô visual situation awareness construction procedures and hedging 
behaviour betwee n manual driving and automated driving situations in that 

the AutoMate car requests driver support to initiate the automated 
overtaking manoeuvre.  

2.2.4.3  Driver state estimation  

In the current state of the project, a final decision about how to test the 

driver m onitoring system has not been taken yet and it depends on where 

this system will be implemented (driving simulator, real car or both) and 
what it is possible to evaluate (distraction or drowsiness).  

 
Distraction.  

In this section, we sketch some ideas for d istraction 2. All in all, driver ôs 
distraction  ï and inattention ï is an important safety concern and not a new 

problem in road safety: we may say that it has been around for as long as 
people have been driving cars. It is moreover likely that the problem w ill 

increase as more wireless or mobile technologies find their way into vehicles . 
Being distracted can make drivers less aware of other road users such as 

pedestrians, cyclists and road workers and less observant of road rules such 
as speed limits and jun ction controls . 

 
Drivers do much more than control the vehicle when driving (such as: 

adjusting an entertainment system or climate control, consulting maps, 

eating / drinking / smoking, interacting with passengers, and so on). Driver 
distraction occurs whe n a driver diverts their attention away from the 

activities needed for safe driving. Distracted driving is the state that occurs 
when attention is given to a non -driving related activity, typically to the 

detriment of driving performance.  
 

Here, we focus o n a particular type of distraction the visual  one, which  
occurs when a driver takes their eyes off the road. Typically this is cause 

when the driver looks away from the road t o engage in a secondary activity 
either inside (e.g. radio, telephone) or outside  (e.g. signs, advertisements) 

of the vehicle.  
 

As aforementioned, driving is a complex task: a person must engage almost 
all of their mental faculties (in other words, it is not simply about physically 

                                    
2 Drowsiness is not easy to test, because of sa fety constraints and 

complexity of the tests. A possibility is to have a complete evaluation for 
distraction and to focus only on detection of false positives for drowsiness.  
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controlling the car) so it is not surprising that atte ntion -grabbing distractions 
can interfere with successful and safe completion of the driving task. The 

brain never actually focuses on two tasks at the same time, it switches back 
and forth between them ï true ómulti-taskingô is a myth. Your performance 

suffers as you struggle to divide your attention (detrimental in accuracy).  
 

In order to evaluate driverôs distraction, dedicated tests have to be carried 
out. For example, a certain num ber of participants can be asked to drive on 

the dedicated test -site in real - traffic situations, while completing a secondary 

task session. Distraction (visual and manual) can be induced by means of a 
secondary visual research task, called SuRT, reproduced on an in -vehicle 

touch screen (7ôô TFT touch screen installed on the right -hand side of the car 
cabin). SURT was chosen to simulate an IVIS (In Vehicle Information 

System). It requires visual perception and manual response, possibly causing 
a degradation of driving task performances. The situation is depicted in the 

following  figures:  
 

 

Figure 4 : sketch of how the SuRT works and possible location inside the 

vehicle cockpit.  

 
Participants are presented with a set of stimuli on a touch screen (e.g. a 

tablet or a smart phone) which can be mounted on the right side of the 
steering wheel in reach of the driverôs right arm. The time interval between 

two consecutive screens was pseudo - randomized between 3 and 9 seconds. 
The output data are the reaction times and the error rates.  

 
At the moment the use of this  methodology (represented by SuRT) is still 

under discussion. Alternatively, it can be used a secondary task based on 

reading aloud a sequence of random lette rs, with a predefined duration.  

Target to search

Display where the 
SuRT was projected
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2.3  Enabler 3: Vehicle & situation models  

As described in the DOW t he  objective s of enabler 3 are to infer an 

integrated probabilistic vehicle and situation model from the data provided 
by Enabler 1 (incl. information from other TeamMate Cars). The model will 

integrate and represent all traffic participants in the surroundi ngs of the 
TeamMate Car as well as the dynamic characteristics of the own vehicle. This 

will be done in a way, which is consistent to human situation understanding 
e.g. by applying scene understanding/classification techniques to put the 

recognized objects  in relation with each other.  

 

2.3.1  Joint Directors of Laboratories (JDL) fusion model   

To realize the vehicle and situation modelling, we propose using the Joint 
Directors of Laboratories  (JDL) fusion model as it provides an established and 

time proven approa ch to handling complex environments. It was initially 
developed for military applications and later adapted to the use in an 

automotive context  (Polychronopoulos & al ., 2006) . For the purpose of 
AutoMate, we will employ tailored  version of the JDL model (s ee Figure 5). 

The perception and the decision/situation layer of the proposed model are 
explained in the next subsections.  

 

 
Figure 5 : simplified version of the JDL model for sensor data fusion  

 

The perception layer  consists of the sensor and object level. In the first step, 
sensor data are pre -processed  on the sensor level. GPS, (stereo) camera, 

RADAR and lase r scanner are widely used sensors. A digital map server is 
also a potential sensor. All sensors must be calibrated with respect to a 
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common coordinate system and synchronized. The situation layer doesnôt 
need a direct access to the sensor level since data needed for the situation 

modelling  und interpretation are provided by the object level. The object 
level must be able to forward sensor data to the situation layer. The sensor 

data (e.g. camera images) can be used on the situation level for visualization 
as well as verification and validation.  

 
In the second step, pre -processed  sensor data from the sensor level are used 

for object detection. Detected objects are fused and tracked over the time. 

Moreover , high ly -accurate information about the road (road marking s, curb, 
etc.), traffic infrastructure (traffic light, traffic signal, etc.) and free space is 

extracted. These data can be recorded offline as a digital map and/or 
detected during driving. The ego -pose and ïmotion are also estimated on 

this layer. The data generated on the perception layer are inputs for the 
situation modelling  and understanding. More details on the perception layer 

can be found in the subsection  2.1 . 
On the decision layer , inputs from the perception layer are integrate d into a 

situation model. The situation model is enriched with semantic information 
and used to predict the evolution on the situation. Another part on the 

Decision layer is the  threat assessment where the situation criticality is 
estimated. Such issues are  addressed in WP3.  

 

2.3.2   Vehicle and Sit uation  Models  

For the driver models developed for intention recognition and online risk 

assessment, the situation model is intended as an i ntermediate layer 
between the sensor and communication platform and the subsequent driver - , 

and vehicle -models and online risk assessment. More specifically, the 
situation model represents a subset of the TeamMate vehicleôs current belief 

about the world b ased on sensor observations and it is assumed that the 
information of the situation model is updated via the sensor and 

communication platform in constant ti e intervals ɝὸ.  
 

In general, the situation model is assumed to maintain information about the 

curre nt state of the TeamMate vehicle, the current states of a number of 
objects recognized in the vicinity of the TeamMate vehicle and a description 

of the environment. More specifically, we assume the existence of a map ὓ 

centered at the current position of the TeamMate vehicle that allows 

reasonable reconstruct the course of the road in the vicinity of the TeamMate 
vehicle . For now, we donôt specify the exact format. 
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Concerning the TeamMate vehicle, the situation model i s assumed to 
ma intain information about the cur rent state of the TeamMate vehicle, 

represented by a set of variables  as described in Table1 :  
╧
ὢ ȟὣ ȟɡ ȟɡ ȟὈ ȟὒ ȟὠ ȟὃ ȟὡ ȟὛ ȟὛ ȟ! ȟ! ȟ! ȟὋ .  

 

Table 1 : Description of variables for the representation of the TeamMate 

vehicle considered for the first cycle.  

Variable  Type  Unit  Description  
ὢ  Continuous  [m]  X-coordinate of the cent er of the 

TeamMate vehicle  in a two -dimensional 

spatial coordinate system  relative to an 
origin synchronized with the map ὓ 

ὣ  Continuous  [m]  Y-coordinate of the center of the 

TeamMate vehicle  in a two -dimensional 
spatial coordinate system  relative to an 

origin synchronized with the map ὓ 
ɡ  Continuous  [rad]  Yaw-angle relative to a global x -axis 

synchronized with the map ὓ 
ɡ  Continuous  [rad]  Yaw-angle relative to the course of the 

road at the TeamMateôs location 
Ὀ  Continuous  [m]  Lateral deviation to a reference on the 

road at the TeamMateôs location, e.g. the 

centerline on a two - lane road  
ὒ  Discrete  πȟȣȟỗὒ Ộ The lane, the TeamMate is currently 

located in, e.g. fast or slow lane on a 
two - lane road  

ὠ  Continuous  [m/s]  Longitudinal velocity along the heading  
ὃ  Continuous  [m/s²]  Longitudinal acceleration  
ὡ  Continuous  [rad/s]  Yaw-rate  
Ὓ  Continuous  [m]  Length (along the x -axis)  

Ὓ  Continuous  [m]  Width (along the y -axis)  

ὃ  Continuous  [%]  Activation of the acceleration pedal  

ὃ  Continuous  [%]  Activation of the braking pedal  

ὃ  Continuous  [rad]  Steering wheel angle  

Ὃ  Discrete  πȟȣȟỗὋ Ộ Selected gear  

 
Within the situation model, the TeamMate state is expected to be provided 

as a probability density function (pdf) ὴ╧ ȿ▫ȡ , the belief state about the 

state of the TeamMate vehicle given all sensor information up to the current 
point in time ὸ. For the first cycle, ὴ╧ ȿ▫ȡ  is assumed to be provided in 

factorized form,  
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ὴ╧ ȿ▫ȡ ὴὢȿ▫ȡ

╧ɴ

ȟ 

where each pdf ὴὢȿ▫ȡ  over a continuous variable ὢᶰ╧  is provided as a 

Normal distribution ὴὢȿ▫ȡ ὔ ὢȿ‘ȟ„ , with mean and variance 

provided by the sensor and communication platform, while each probability 
mass function over a discrete variable  ὣᶰ╧  is provided as a vector 

denoting the probabilities for each ώɴ ὣ. Where such information c annot be 

provided directly by the sensor and communication platform, it is expected 
to be derived by a semantic enrichment of the situation model.  

 
Concerning other traffic participants and objects, let ά denote the number of 

recognized objects in the vic inity of the TeamMate vehicle ╞ ὕȟȣȟὕ , 

each object ὕᶰ╞ is assumed to be represented by a set of variables ╧

ὢȟὣȟɡȟὠȟὃȟὡ ȟὛ ȟὛ ȟὉȟὅȟὒ , described in Table 2 and provided as a 

belief state ὴ╧ȿ▫ȡ . As for the TeamMate vehicle, for the first cycle, 

ὴ╧ȿ▫ȡ  is assumed to be provided in factorized form. More specifically, let 

╧Ṓ╧  denote the set of continuous variables and ╨Ṓ╧  it is assumed that  
ὴ╧ȿ▫ȡ  is given by  

ὴ╧ȿ▫ȡ ὴὢȿὉ ÔÒÕÅȟ▫ȡ

╧ɴ

ὴὣȿ▫ȡ

╨ɴ

ȟ 

where each pdf ὴὢȿὉ ÔÒÕÅȟ▫ȡ  over a continuous variable ὢᶰ╧ is 

provided as a N ormal distribution ὴὢȿὉ ÔÒÕÅȟ▫ȡ ὔ ὢȿ‘ȟ„ , with 

mean and variance provided by the sensor and communication platform, 

while each probability mass function over a discrete variable ὣᶰ╨ is provided 

as a vector denoting the probabilities for each ώᶰ6ÁÌὣ. For the most part, 
the information represented by ╧  should be considered standard for current 

LIDAR sensors. Where such information cannot be provided directly by the 

sensor and co mmunication platform, it is expected to be derived by a 
semantic enrichment of the situation model.  

Table 2 : Description of variables for the representation of an object ╞ᶰ╞ in 

the vicinity of the TeamMate vehicle considered for t he first cycle . 

Variable  Type  Unit  Description  
ὢ  Continuous  [m]  X-coordinate of the center of the object ὕᶰ

╞ in a two -dimensional spatial coordinate 

system  relative to the position of the 
TeamMate vehicle  

ὣ Continuous  [m]  Y-coordinate of the center of the object ὕᶰ
╞ in a two -dimensional spatial coordinate 

system  relative to the position of the 

TeamMate vehicle  
ɡ  Continuous  [rad]  Yaw-angle relative to a reference axis  
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6 Continuous  [m/s]  Longitudinal velocity along th e objects 
heading  

!  Continuous  [m/s²]  Longitudinal acceleration  
7  Continuous  [rad/s]  Yaw-rate  
3  Continuous  [m]  Length (along the x -axis)  

3  Continuous  [m]  Width (along the y -axis)  

%  Binary  ÔÒÕÅȟÆÁÌÓÅ Binary flag, whether the object ὕᶰ╞ exists 

in the current traffic scene.  
#  Discrete  πȟȣȟỗ#Ộ Classification of the object ὕᶰ╞, e.g. PKW, 

LKW, VRU, etc.  
ὒ Discrete  πȟȣȟỗ,Ộ The lane, the object ὕᶰ╞ is currently 

located in, e.g. fast or slow lane on a two -

lane road  

 

2.3.3  Semantic enrichment of the situation model  

The goal of the semantic enrichment is to extend the inputs from the 
perception layer with semantic information. For this purpose, we propose 

ontology extended with logical rules  in the first cycle of this project. An 
ontology is a semantic model that represents domain knowledge using 

concepts and relations. A modelled ontology can be used to reason about 
new complex relations and facts. For this work, we used the Web Ontology 

Language (OWL) 2  (Motik & al . , 2009)  and the  Semantic Web Rule Language  
(SWRL) (Horrocks & al ., 2004)  to model the ontology and logical rules. 

Figure 6 shows an overview of the taxonomy (ñhas subclass ò) and the 
relations we modelled in the ontology for this cycle using Protégé (Musen & 

al, 2015) . Scene objects as pedestrian, vehicle, traffic light, traffic signal and 
road are concepts of this ontology. The relations between those scene 

objects are spatial, temporal and semantic.  

 
These relations are divided into three main classes:  

1.  Assignment of roads/lanes to traffic participants (ñis_onò) as well as 
traffic lights and signals (ñstreet_has_trafficlight ò, ñstreet_has_sign ò) 

using map matching,  
2.  Assignment of traffic lights and signals to allowed maneuvers 

(ñsignal_maneuverò) based on traffic rules, 
3.  Assignement of traffic participants allowed maneuvers 

(ñallowed_maneuverò) and maximal velocity (ñhas_max_speed_valueò) 
according to the traffic rules.  
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Figure 6 : Overview of the proposed ontology taxonomy (left) and the 

relations legend (right). See color version of the image for more details.  

Based on the relations and concepts of the ontology presented above, SWRL 

rules describing basics traffic rules are modelled. These SWRL rules cover 
following part of the traffic rules (see Table 3):  

1.  Definition of manoeuvres  associated with  traffic lights and signals 
(rules R1 to R3)  

2.  Definition of allowed manoeuvres  on a road depending on the assigned 

traffic lights and signals (rules R4 and R5)  
3.  Definition of traffic participant allowed manoeuvres  and maximal 

velocity depending on the road a ssigned to the traffic participant (rules 
R6 and R7)  

 

Table 3 : examples of SWRL rules for basic traffic rules  

Name  Rule  Meaning  

R1 ίὸέὴίͅὭὫὲȩί ͮ άὥὲὩόὺὩὶȩά  ͮ 
ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩίȟȩά  O  ίὸέὴȩά  

Stop sign allows s top 

maneuver  
R2 ὫὭὺὩύͅὥῴίὭὫὲȩί ͮ άὥὲὩόὺὩὶȩά  ͮ 

ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩίȟȩά  O  ίὰέύᾨέύὲȩά  
Give way sign allows 

slow maneuver  
R3 ὸὶὥὪὪὭὧᾲὭὫὬὸȩὰ ͮ ὬὥίͅὸᾲίὸὥὸὩȩὰȟȩί ͮ ὶὩᾨὰὭὫὬὸȩί ͮ 

ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩὰȟȩά  O  ίὸέὴȩά  
Red traffic light allows 

stop maneuver  
R4 ὸὶὥὪὪὭὧᾲὭὫὬὸȩὰ ͮ ὶέὥὨȩὶ ͮ ὶέὥᾨίὭὫὲȩί ͮ 

ὸὶὥὪὪὭὧὰὭὫὬὸͅὥίίὭὫὲὩὨὸͅέͅίὸὶὩὩὸȩὰȟȩὶ ͮ 
ίὭὫὲᾥίίὭὫὲὩὨὸͅέͅίὸὶὩὩὸȩίȟȩὶ ͮ 

ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩίȟȩά  ͮ ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩὰȟȩάς 
ᴼ ίὸὶὩὩὸᾴὥὲὩόὺὩὶȩὶȟȩάς 

Traffic lights has high 

priority comparing to 
traffic signs , if both 

are assigned to the 
same road  

R5 ὶέὥὨȩὶ ͮ ὶέὥᾨίὭὫὲȩί ͮ  
ίὭὫὲᾥίίὭὫὲὩὨὸͅέͅίὸὶὩὩὸȩίȟȩὶ ͮ 

ὲέͅὸὶὥὪὪὭὧὰὭὫὬὸͅὥίίὭὫὲὩὨὸͅέͅίὸὶὩὩὸȩὶȟὸὶόὩ ͮ 
ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩίȟȩά  O  ίὸὶὩὩὸᾴὥὲὩόὺὩὶȩὶȟȩά  

maneuver allowed on 
that road depend on 

the assigned traffic 
sign where there is 
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no traffic light  
R6 άέὦὭὰὩέͅὦὮὩὧὸȩέ ͮ ὶέὥὨȩὶ ͮ 

ίὸὶὩὩὸᾴὥὲὩόὺὩὶȩὶȟȩά  ͮ Ὥίͅέὲȩέȟȩὶ  
ᴼ ὥὰὰέύὩὨᾴὥὲὩόὺὩὶȩέȟȩά  

Traffic participants 

allowed maneuve rs 
depend on the road 

there are on  
R7 ὶέὥὨȩὶ ͮ ὶέὥᾨὺὩὬὭὧὰὩȩέ ͮ Ὥίͅέὲȩέȟȩὶ ͮ  

ὬὥίͅάὥῲίὴὩὩὨὺͅὥὰόὩȩὶȟȩὺ 
ᴼ ὬὥίͅάὥῲίὴὩὩὨὺͅὥὰόὩȩέȟȩὺ 

Vehicles allowed 

maximal velocity 
depend on the road 

there are on  

 
For testing the modelled ontology and traffic rules, we generated the scene 

in Figure 7. In this scene, the ego -vehicle (red) is approaching an 
intersection, where the traffic light is red. Another v ehicle is approaching the 

intersection on a lane with green light. Based on this  scene, individuals are 
generated for:  

 
¶ the vehicles (ñVehicle(?vh1) ò and ñVehicle(?vh1) ò ), 

¶ the traffic lights (ñTraffic_light(?tl1) ò and ñTraffic_light(?tl2) ò), 
¶ the traffic lights states (ñRed_light(?tlst1) òand ñGreen_light(?tlst2) ò), 

¶ the maneuvers (ñManeuver(?mn1) òand ñManeuver(?mn2) ò) which will 

be inferred , and  
¶ the roads (ñRoad(?street1) ò, ñRoad(?street2) ò) 

 
Furthermore traffic lights and vehicles are matched to the corresponding 

roads using the relations ñIs_on(?vh1,?street1) ò, ñIs_on(?vh2,?street2) ò, 
ñTrafficlight_assigned_to_street(?tl1,?street1) ñ and 

ñTrafficlight_assigned_to_street(?tl2,?street2) ñ. Traffic lights states are set 
using the relations ñHas_tl_state(?tl1,?tlst1) ò and ñHas_tl_state(?tl2,?tlst2) ò.  

The ñPelletò reasoner available on Proté gé infers the allowed maneuvers  for 
each vehicle individual according to the traffic rules. The allowed maneuver 

ñAllowed_maneuver(?vh1,?mn1) ò inferred for ñVehicle(?vh1) ò is 
ñStop(?mn1) ò, meaning that this vehicle must stop due to  the red light. For 

ñVehi cle(?vh2) ò the inference result ñDrive(?mn2) ò allows this vehicle to 
drive since the traffic light assigned to the road this vehicle is driving on is 

green. Based on the inference results, we can conclude that the ontology and 

logical rules can be used to infer traffic participants allowed maneuvers 
according to the traffic rules.  

 
The allowed manoeuvres  inferred by the reasoner will be used in the second 

project cycle for predicting the traffic evolution. For that, we will develop an 
interface allowing us to integrate the ontology, the logical rules and the 

reasoner results into the situation interpretation module working on real 
traffic data.  
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Figure 7 : illust ra tion of the semantic erichment at an intersection based on 

the ontology and logical rules.  

 

2.3.4  Predicting the f uture evolution of the t raffic scene  

The purpose of vehicle models is to predict the future evolution of the traffic 

scene based on the information represented by the situation -model and the 
use of vehicle -model s as a necessary input for online risk assessment (for 

more information on online risk assessment, we refer to the deliverable D3.3 
ñConcepts and algorithms incl. V&V results from 1st  cycleò). 

 

2.3.4.1  Vehicle - Models  

In this context, vehicle models should be under stood as motion models. 
Based on a comparison and evaluation of motion models for vehicle tracking 

(Schubert et al., 2008) and their successful use for risk assessment for 
collision avoidance systems (Houenou et al., 2013, 2014), we use the so -

called Const ant Turn Rate and Acceleration  (CTRA) (Schubert et al., 2008), 
resp. Constant Yaw -Rate and Acceleration  (CYRA) motion model (Houenou et 

al., 2013, 2014). The CYRA model is based on a state space  
▼ ὼȟώȟ—ȟὺȟὥȟύ ȟ 
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where ὼ and ώ (in ά) denote the spatial coordinates of the center of the 

vehicle, — (in ὶὥὨ) denotes the yaw angle in respect to a reference axis, ὺ (in 

άȾί) denotes the longitudinal velocity along the heading, ὥ (in άȾί) denotes 

the longitudinal acceleration, and  ύ (in ὶὥὨȾί) denotes the yaw -rate. The 

state transition equation for this model is given by  

▼

ở

Ở
Ở
ờ

ὼ
ώ

—
ὺ
ὥ
ύ Ợ

ỡ
ỡ
Ỡ

Ὢ ▼ȟ 

with  

ὼ

ừ
Ừ

ứὼ
ρ

ύ

ὥ

ύ
ÃÏÓ— ÃÏÓ — ὺ ÓÉÎ— ὺÓÉÎ— ȟ ύ π

ὼ
ρ

ς
ὥ ɝὸ ɝὸ ὺ ÃÏÓ—ȟ ύ π

ȟ 

ώ

ừ
Ừ

ứώ
ρ

ύ

ὥ

ύ
ÓÉÎ— ÓÉÎ — ὺ ÃÏÓ— ὺÃÏÓ— ȟ ύ π

ώ
ρ

ς
ὥ ɝὸ ɝὸ ὺ ÓÉÎ—ȟ ύ π

ȟ 

— — ɝὸ ύȟ 
and  

ὺ ὺ ɝὸ ὥȢ 
 

2.3.4.2  Unscented Transformation  

In the following, let ╢ ὢȟὣȟɡȟὠȟὃȟὡ  denote a reduced set of state 

variables for an object ὕᶰ╞ and let ὴ╢ȿὉ ÔÒÕÅȟ▫ȡ  denote our beliefs 

about ὕ, given all observed sensor values up to the current point in time, 

and given that said object ὕ is actually existing. We can obtain a prediction 

for a future time step  ὴ╢ ȿὉ ÔÒÕÅȟ▫ȡ  via unscented transformation 

(Wan and Van der Merwe, 2000, Murphy, 2012). The basic idea is as follows:  
Under the assumption that ὴ╢ȿὉ ÔÒÕÅȟ▫ȡ  is a multivariate Gaussian 

ὔ╢ȿⱧȟɫ , weôd like to estimate ὴ╢ ȿὉ ÔÒÕÅȟ▫ȡ  as a multivariate 

Gaussian ὔ╢ ȿⱧ ȟɫ , where ╢ Ὢ ╢ , with Ὢ  being the 

nonlinear function given by the CYRA motion model. Following Murphy 

(2012), let Ὠ φ denote the dimension of the multivariate Gaussian, we 

create a set of ςὨ ρ sigma vectors ▼, where  
▼ Ⱨȟ 

▼ Ⱨ Ὠ ‗ɫ
ȡ

ȟὭ ρȟȣȟὨȟ 
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▼ Ⱨ Ὠ ‗ɫ
ȡ

ȟὭ Ὠ ρȟȣȟςὨȟ 

and a corresponding set of ςὨ ρ sigma weights for both mean ύ ȟ and 

covariance ύȟ, where  

ύ ȟ

‗

Ὠ ‗
ȟ 

ύȟ
‗

Ὠ ‗
ρ ‌ ‍ȟ 

ύ ȟ ύȟ
ρ

ςὨ ‗
ȟὭ ρȟȣȟςὨȢ 

Here, Ὠ ‗ɫ
ȡ
 denotes the Ὥth column of the (scaled) square - root matrix 

of ɫ , ‗ ‌ Ὠ Ὧ Ὠ is a scaling parameter, with ‌ and Ὧ being 

corresponding parameters that determine the spread of sigma vectors 

around the mean, while ‍ can be used to incorporate prior information on 

(non -Gaussian) distributions. For Ὠ ρ, Murphy (2012) states optimal values 

as ‌ ρ, ‍ π, and Ὧ ς, which we adopt for unscented transformation in 

AutoMate for the time being. We propagate these sigma vectors through the 

nonlinear function to obtain a transformed set of sigma vectors ▼ :  

▼ Ὢ ▼Ȣ 

The mean Ⱨ  for ὔ╢ ȿⱧ ȟɫ  is then computed from this transformed 

sigma vectors as  

Ⱨ ύ ▼ ȟ 

and its covariance ɫ  is given by  

ɫ ύ ▼ Ⱨ ▼ Ⱨ Ȣ 

Given this, let ὲ denote the desired prediction horizon, we predict the future 

evolution of the traffic scene, by estimating ὴ╢ ȿὉ ÔÒÕÅȟ▫ȡ ȟὭ ρȟȣȟὲ 

for each object ὕᶰ╞ known to the TeamMate vehicle.  

For the first cycle, the prediction of the future evolution of the traffic scene 

makes strong simplifications. The vehicle models are based on the 
assumptions of constant accelerations and yaw -rates. By now, the algorithm 

does not incorporate knowledge about the map ὓ into our predictions of the 

future s tate of other objects, i.e., the algorithm assumes that everything 

evolves statically. These limitations will be addressed in future cycles . 

 

2.3.5   V+V of Vehicle and Situation Models  

As of now, the prediction of the temporal and spatial evolution of the traffic 
scene  via the CYRA vehicle model (Section  2. 3. 4. 1) has been implemented 
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for surrounding traffic participant under the assumption that the necessary 
input can be provided  (Figure 8) . The corresponding functionality has been 

tested using inputs provided by the SILAB simulation environment used at 
the OFFIS Institute for Information Technology . 

 

 

Figure 8 : Screenshot of an exemplar y visualization of the 95% prediction ellipses 

of the position of the lead vehicle (red). The coloured rectangles represent vehicles 

in the vicinity of the TeamMate vehicle (white rectangle). Blue lines indicate 

heading vectors, the purple line represents the centreline of a two - lane motorway.  

For validation purposes, we tested the preliminary ñcorrectnessò of the 

vehicle models on data sets obtained in simulator driving studies in the 

SILAB simulation environment. The data set comprises a time -series of 
29 5123 training samples, recorded with a frequency of 60Hz, with each 

sample containing the data representing the necessary input of up to eight 
vehicles in the vicinity of the TeamMate vehicle, up to two vehicles on the 

current and adjacent lanes, both in f ront and behind the TeamMate vehicle. 
Let ▼ ὼȟώȟ—ȟὺȟὥȟύ  denote the ground truth of the state of a vehicle ὺ 
in the vicinity of the TeamMate vehicle at a time ὸ in the data set, and ὧ 

denote the current curvature of t he road, w e used the following estimate for 
our initial belief state ὴ╢ȿὉ ÔÒÕÅȟ▫ȡ :  

 
ὴ╢ȿὉ ÔÒÕÅȟ▫ȡ

ὔ

ở
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Ở
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Ⱨ
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ỡ
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ỡ
ỡ
ỡ
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Due to the nature of simulated traffic realized by a kind of bang -bang 
controller, we replaced the true acceleration by zero and the true yaw rate 

the required yaw rate to follow the course of the road (if aligned with the 
road), but added a high uncertainty on the actual esti mate.  

 

At each time step ὸ and each vehicle ὺ within the sensor range of the 

TeamMate vehicle, we estimated the belief states of the future state of the 

vehicle ὴ╢ ȿὉ ÔÒÕÅȟ▫ȡ  for a set of prediction horizons of Ὥ ρȟȣȟρπ 
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seconds, from whi ch we derived marginalized two -dimensional belief states 

ὴὢ ȟὣ ȿὉ ÔÒÕÅȟ▫ȡ  and marginalized three -dimensional belief states 

ὴὢ ȟὣ ȟɡ ȿὉ ÔÒÕÅȟ▫ȡ .  

 

At each subsequent time step ὸ Ὥ, we then checked, whether the true 

marginalized state of the vehicle ὼ ȟώ ȟ— , resp. ὼ ȟώ  was located 

within the 50%, 90%, 95%, and 99% prediction ellipses derived from 

marginalized two -dimensional belief states ὴὢ ȟὣ ȿὉ ÔÒÕÅȟ▫ȡ  and 

marginalized three -dimensional belief states ὴὢ ȟὣ ȟɡ ȿὉ ÔÒÕÅȟ▫ȡ . For 

the two -dimensional belief states, we furthermore calculated the mean 

cartesian distance between the actual position ὼ ȟώ  and the expected 

position Ὁὢ ȟὣ ȿὉ ÔÒÕÅȟ▫ȡ . The resulting data was aggregated over all 

different vehicles to derive the perce ntage of vehicles outside the 
corresponding prediction ellipse for each temporal prediction  horizon. The 

results are summarized in Table 4. We note that limited (simulated) sensor 
range of 2ᴜ00m for the detection of surrounding vehicles and a detection 

based on the spatial relation between the different vehicles, make it possible 

that a vehicle was outside the sensor range prior to entering temporal 
intervals, leading to a reduction of counts  as apparent in Table 4. 

Table 4 : Validation results for the use of implemented vehicle models for predicting 

the spatial and temporal evolutio n of the traffic scenes at different future time 

steps. Bracketed percentages outside prediction ellipses were obtained by 

comparing the three - dimensional states.  

Prediction 

Horizon  

Number 

of 

samples  

Percentage 

Outside 

50% 

Prediction 

Ellipse  

Percentage 

Out side 

90% 

Prediction 

Ellipse  

Percentage 

Outside 

95% 

Prediction 

Ellipse  

Percentage 

Outside 

99% 

Prediction 

Ellipse  

Mean 

Cartesian 

Distance  

1s 1239231  
5.664  

(8.230)  

3.616  

(6.056)  

3.206  

(5.568)  

2.529  

(4.667)  
2.075  

2s 1213792  
5.957  

(12.347)  

2.709  

(8.814)  

2.237  

(8.316)  

1.849  

(7.584)  
4.730  

3s 1190865  
4.165  

(15.630)  

2.204  

(11.964)  

1.891  

(11.391)  

1.445  

(10.526)  
8.022  

4s 1170298  
3.423  

(19.942)  

1.643  

(14.881)  

1.329  

(14.050)  

0.933  

(12.885)  
12.157  

5s 1151489  
2.974  

(26.991)  

1.167  

(20.054)  

0.958  

(18.858)  

0.638  

(17.157)  
17.209  

6s 1133906  
2.457  

(37.342)  

0.890  

(28.780)  

0.689  

(27.125)  

0.421  

(24.615)  
24.650  

7s 1116738  
1.990  

(48.402)  

0.670  

(39.689)  

0.501  

(37.814)  

0.334  

(34.770)  
33.403  

8s 1099544  
1.659  

(55.335)  

0.522  

(47.066)  

0.403  

(45.217)  

0.252  

(42.186)  
42.430  

9s 1082839  
1.441  

(56.384)  

0.436  

(47.056)  

0.318  

(45.014)  

0.247  

(41.721)  
51.093  
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10s  1066314  
1.257  

(57.506)  

0.347  

(45.965)  

0.291  

(43.497)  

0.273  

(39.643)  
60.405  

 

As apparent, the percentage outside the dedicated prediction ellipse for the 

three -dimensional states quickly exceeds the expected percentage with 
extended prediction horizons. Furthermore, although the percentages for the 

two -dimensional states are mostly  below the expected percentages and fall 
with exceeded prediction horizons, this result is only achieved by a 

corresponding inflation of the prediction ellipses, as indicated by the mean 
Cartesian distance (c.f. Figure 8).  

 
For future cycles, we will test to improve these preliminary results by 

incorporating knowledge and expectations of the future course of the road, 
potential manoeuvres, and potential interactions between vehicles.  

The tests protocols, the vehicles or simulator and  the scenarios are still to be 
defined in discussion with the partners.  

It is already planned that t he situation model and the driver state will be 
integrated and test in the VED demonstr ator, these two modules will enrich 

the feasibility of the system in the case of the project and will help to ensure 

good transitions between the driver and the teammate system.  VEDECOM 
will focus on the Martha scenario, this scenario will be tested, first  on the 

Satory High speed track wit h an emulation of real situations and on an open 
road (the A86 highway) under constraint of having the legal authorizations 

from the local authorities. The scenario will be tested on 40 participants. In a 
second hand, if time permits it, we are interested to test the urban use 

cases.  
 

3  Instantiation of the Automate platform   

The three following scenarios instance the automate platform . Here a  general 
description of the scenarios is provided; more details are available on D1.1 

ñDefinition of framework, scenarios and requirements ò and, for a refinement of 
Cycle 2, in D1.3 ñDefinition of framework, scenarios and requirements ò (currently 

in progress) :  
 

¶ User scenario 1  
User Scenario 1: 

Peter  
Driver out of the loop, manoeuvre becomes necessary Rural Road  

On a rural road, a driver is reading in full automation when a large vehicle makes an 

evasive manoeuvre necessary.  
TeamMate Car Functionality and Added Value  

(1) Situation understanding; (2) Anticipation of unsafe system predictions; (3) Decision 
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that support from driver is needed; (4) ñExplainingò situation to driver; (5) Generating 
optional interventions; (6) Detecting driver state; (7) Check driver decision for overtaking; 

(8) Planning and monitoring of overtaking manoeuvre  

 

¶ User scenario 2:  
User Scenario 2: 

Martha  
Take - over of automation after driver 

distraction  
Motorway  

While driving manually, a driver suddenly receives a distracting message and the system 

takes over.  

TeamMate Car Functionality and Added Value  

(1) Driver monitoring with attention detection; (2) Driver recognition (distracted driver); 
(3) Anticipation of unsafe predictions due to distraction; (4) Decision that driver needs 

help; (5) Communication about situation to driver; (6) Adaptive communication and hand -
over strategy; (7) Hand -over from manual driving to fully automated; (8) Escalating 

hand -over strategy with driver monitoring.  

 

¶ User scenario 3:  
User Scenario 3: 

Eva  

Learning to  efficiently manage a 

roundabout  

City Traffic  

A TeamMate Car is driving through a complex roundabout with different traffic and driving 

status conditions (i.e. risky driving situation (i.e. hidden pedestrian crossing), high/low 
driver workload).  

By driving through a complex roundabout  several times, the system learns from the driver 
how to deal with it efficiently and how to manage hand -over situation between human and 
automated system efficiently.  

TeamMate Car Functionality and Added Value  

(1) Driver monitoring; (2) Situation recognition; (3) Manoeuvre planning under 
uncertainty; (4) Safety assessment & decision that help from driver is needed; (5) 
Communicate situation to driver; (6) Handover from automated to manual driving; (7) 

Solution recor ding; (8) Deduction of general solution; (9) Learning of new solution  

 

3.1   User scenario 1 ( Peter )  

The ULM demo car will be used to implement, verify and validate the  user 

scenario 1 . A part of the verification and validation will be conducted in the 

ULM dr iving simulator. It is a static driving simulator which runs the SILAB 
driving simulation software. This software makes the simulation of any 

degree of driving automation, needed to conduct verification studies, 
possible. Each automation feature (e.g. ACC,  lateral control etc.) can be 

turned off if needed. The sensors can also be simulated in accordance with 
experimental needs. Different driving variables can be recorded while driving 

in the simulator. These include lateral and longitudinal control, the 
int eraction with the simulator, environmental and traffic parameters. The 

driver can interact with the car via the standard in vehicle instruments 
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(steering wheel, indicators and pedals) or via a touch screen, which is 
integrated in the central stack of the v ehicle mock -up.  

3.1.1  Sensors and communication platform of ULM demo car  

The road structure of the test - route is stored into a pre - recorded digital map 

using UTM coordinates. To extract relevant data from this map, the cars 
position must be localised.  Free -space is located in between the boundary 

lines of the current lane.  
 

Stopping due to dynamic obstacles is performed by closing the boundary 

lines to restrict the free -space. For a m ore detailed description see (Kunz & 
al, 2015) .   

 
Environment representation:  

-  Pre- recorded data:  
¶ Reference line as input for trajectory plann ing, e.g. center of lane 

(polygonal line, UTM coordinates).  
¶ Speed limits assigned to each lane  

¶ Static stop points, for example stop signs (stop must be performed!).  
 

-  Online calculated data  
¶ Boundary lines (2 polygonal lines, UTM coordinates).  

¶ Volatile sto p points (due to static obstacles on the road)  
¶ Current position and predicted trajectories of other vehicles and 

pedestrians (spatial data: UTM coordinates and object dynamics, e.g., 

velocity and acceleration)  
¶ State of traffic lights  

 
In Addition, the sens or setup of the demonstrator is shown in the figure 

below. This consists of two long - range radars, as well as cameras for the 
view near front and rear, as well as an additional stereo -camera, a laser -

scanner and four short - range radars.  
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3.2  User Scenario 2 ( Martha )  

VED will use both its car and its simulator to implement, integrate and 
validate the user scenario Martha. VED already provides a demonstrator 

vehicle that is capable of autonomous driving in urban area; however, the 
Martha scenario requires a high -speed vehicle capable to deal with highway 

situations. We are actually equipping a new vehicle to implement our 
algorithms and the algorithms of the project.  

 

3.2.1  Sensors and communication platform of VED demo car  

The VED Automate sensor platform is composed  of the following sensors:  

¶ Monocular cameras  
¶ 5 Lidars + a fusion system  

¶ 1 Long Range Radar  
¶ 1 Global Navigation Satellite System (GNSS)   

¶ 1 I nertial Measurement Unit (IMU)   
¶ 1 multi -bandwidth communication platform  (wifi, 4G, internet, 

802.11p)  
 

The following  table summarizes the situation of the most important sensors 
for the actual VEDECOM test -car , which are in accordance with the project:  
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Function  
Tech-
nology  

Supplier / 
Model  

Op. Freq. / 
Wavel. 

Range  
Hor. field 
of view  

Update 
rate  

Interface  

Front 
objects 

Radar 
Continenta
l ARS 408 

77 GHz 200 m 17° 16 Hz CAN 

Surroundin
g objects 

5 Lidars IbeoLux  100 m 360° 25 Hz 
Ethernet 
TCP/IP 

Vehicle 
Position 

GNSS 
IXEA + 
Septentrio 

L1/L2  25 Hz RS232+PPS 

Vehicle 
Position ς 
lateral (lane 
marking) 

Camera VEDECOM //  60m 60° 25 Hz Ethernet 

 

In addition to the sensors we have several algorithms running:  
¶ Obstacle detection tracking and fusion: In this part each surrounding 

obstacle is detected and tracked over time and its state vector is 
returned at each step of computation.  

¶ Lane marking detection: based on a monocular camera, we have 
developed a robust algorithm of lane marking which detect the lines 

and their typology (dashed, continuous  ...etc.)  

¶ Path following and control algorithms: our car is able to follow a path, 
this path can be either computed from the results of the perception 

step or replay a recorded path coming from the IMU/GPS or a SLAM 
algorithm (in urban areas.).  

 
To deal with high  vehicle  speed a new demo car is under construction for 

Automate. Th e equipment will have the same environmental sensing 
capabilities. The Vedecom Demo Car has actually a V2X interface based on a 

multiband architecture (802.11p, 3G, 4G, Internet). This interface is 
compatible with the latest ETSI norms. In addition to that , a network 

between the different systems, ECUôs and computers ensures the 
communication inside the car. Tests will be performed to check the 

operability between proposed sensors and the existing platform. The current 
sensor platform will be then enhanced with operable sensors and 

communication layer  

The Vedecom sensor platform will also include a driverôs state sensor 
required for detecting the driverôs distraction. 

3.3  User Scen ario 3 ( Eva )   

The CRF and REL will use a driving simulator to implement, verify an d 

validate the user scenario 3. Three main reasons for that:  
¶ Possibility to consider also high -critical situations and scenarios ï such 

as roundabout in urban scenarios ï without safety concerns.  
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¶ Experiments involving real users, with the  advantage to explore 
several H MI  solutions, as well as to investigate acceptability and 

usability issues (in a more flexible and effective way).  
¶ Possibility to focus the attention on the interaction between human -

agent and machine -agent, thus on the decis ion aspects, not affecting 
by perception problems.  

 
In addition, a test -vehicle (from AdaptIVe EU project) is available to collect 

data from real -wor lds and to test single and specific modules/components 

(e.g. driver monitoring system from CAF, on - line ris k assessme nt module, 
driver model, and so  on).  It is not foreseen to experiment the Eva scenario 

with this vehicle. Main reason s are related with HMI integration issues and 
the fact that we cannot test this vehicle in real - roads and to make exhaustive 

test s on a dedicated test - track is not fully representative . Besides o n the 
driving simulator we are free to investigate also high critical situations ( fully 

exploiting the potential benefit of the team -mate car )  not possible with a 
real -vehicle . 

 
In the next paragraphs, we will focus on the sensorial system available on 

the test -vehicle, which is built on the basis of a Jeep Renegade, with  
robotised gearbox . This is because this model already offers some 

components and functions that are useful for the automatic system 
developed in the project. Following the approach of the layered architecture, 

the automatic system uses as much as possible of production vehicle 

components, adding redundancies, extra information sources and driver 
interaction channels to  what is already available in production.  

3.3.1  Sensors and communication platform of the CRF test - car  

The following table shows the situation for the CRF test -car  (Bisoffi et al., 

2015) :  
 

Function  
Tech-
nology  

Supplier 
/ Model  

Op. Freq. / 
Wavel. 

Range  
Hor. fie ld 
of view  

Update 
rate  

Interface  

Front 
objects and 
Lane 

Radar + 
Camera 

Delphi 
RACam 1.0 

77 GHz 100 m 100° 20 Hz 
Ethernet 
UDP 

Front 
objects 

Lidar 
Valeo 
ScaLa 

905 nm 150 m 145° 25 Hz 
Ethernet 
TCP/IP 

Vehicle 
Position 

GNSS 
NovAtel 
Flex6 

L1/L2  20 Hz RS232+PPS 

Side/rear 
objects 

Radar 
Autoliv 
SR radar 

24 GHz 14 m 100° 20 Hz CAN 

Side/rear 
objects 

Ultrasound 
Series 
production 

ultrasound 5 m 60° 100 Hz CAN 
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It is worth to noting here that the ñrangeò parameter is referred to the target 
constituted by a car.  

 
For what concerning the actuators used to control vehicle motion in 

automatic mode (that is brake, steering, and the engine), they are the same 
as available on the production car model, but with specific SW update in the 

control ECUs, in order to be able to accept possible control requests from the 
autonomous system.  

 

To conclude, a final remark: what is described before is true for the test -
vehicle, not necessarily for the driving simulator, where the scenario is 

specifically built and thus ADAS sens ors are ñsimulatedò as well. 

4  Conclusion  

In cycle1, we have defined the demonstrator sensor platforms according to 
the scenarios requirements. These are either new demonstrator s or existing 

demonstrators , which will be updated with the additional required s ensors.  

This concerns mainly the driverôs state sensor and the V2V, V2X sensors.  
 

Regarding the driver modelling we have produced lists of goals and operators 
that can now be used to model driver -vehicle - interactions. We defined and 

implemented a template  probabilistic driver model for intention recognition 
and behaviour assessment, whose fine - level structure and parameter can be 

learned from time -series of human driving data.  
 

The work on situation modelling focused on the semantic enrichment of the 
situation model and the prediction of the situation evolution. The semantic 

enrichment of the situation model based on the data provided by the 
perception layer was implemented using  an ontology and logical rules. First 

vehicle models based on the CYRA motion model have been implemented 
and can be used for the prediction of the temporal and spatial evolution of 

the traffic scenes required by online risk assessment.  

 
In this first cycl e a study for learning, verification and validation of the 

driverôs intention recognition and driverôs situation awareness has been  
performed . It includes  48 subjects driving the Peter scenario on two driving 

simulators equipped with an eye - tracking system . Although focussing on the 
Peter scenario for the moment, the resulting model is then planned to be 

adapted to provide behaviour assessment in the Martha and Eva scenarios. 
Potential required collection of additional experimental data for this 

adaptation will be discussed with the related teams.  
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In  the next cycle, we will start with integrating the sensors in the 
demonstrator platforms and further verification and validation test will then 

be performed at system level. T he driverôs state sensor hardware  will be 
finalized and improved models will be integrated.  

 
We will model the driver behaviour and driver interaction with an automation 

based on the empirical data, and use this knowledge to make suggestions 
regarding the design of the TeamMate car. Based  on the experimental data 

obtained in the first cycle, the probabilistic driver models for intention 

recognition and behaviour assessment will be trained and validated. 
Furthermore, the semantic enriched situation model will be extended with an 

interface t o provide inputs to the module for predicting the situation 
evolution, and the vehicle models will be extended to incorporate knowledge 

about the future course of the road and potential future manoeuvres.  
 

Verification and Validation of the situation model  and driverôs model will be 
done in the different demonstrator vehicle s with the related scenarios.  

Experiments with the Martha scenario are planned to test both models 
including driverôs state sensor. The experiments will be performed with the 

VED vehicle  first in a high speed track with an emulation of real situations 
and on an open road (the A86 highway) under constraint of having the legal 

authorizations from the local authorities.  The next cycle e xperiments for the 
Eva and Peter  scenarios are planned a nd still under discussion with the 

related teams . 
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