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1 Introduction 

The overall goal of the AutoMate project is to develop the “Team Mate” car. 
In addition to many assistance functions, this system will be able to drive 
autonomously, if a sufficient number of sensor data is available. In order to 
be able to maneuver safely through the environment, a driving strategy must 
be available, which at the same time ensures safety and comfort for the 
vehicle driver, as well as for the other road users. This task is very 
challenging, as decisions and subsequent actions must be planned for the 
future. While humans do this task intuitively, the automation has to be based 
on a quantitative environment model. In addition, the actions of further 
traffic participants have to be estimated. For this purpose, behaviour models 
are used for other traffic participants, which provide uncertainty-based 
estimates regarding positions, speed, as well as other required information. 
Based on this, a concrete path and corresponding velocities, accelerations 
etc. can be planned. This process is called trajectory planning. The values 
contained in the trajectory thus represent the action to be performed for the 
vehicle and are forwarded to the vehicle controller. In addition, the vehicle 
shall learn the driver’s preferences. Therefor learning algorithms will be 
used, which adapt the parameters of the trajectory planning algorithm 
accordingly. 
The above tasks describe the contents of WP3. In this deliverable, possible 
concepts for trajectory planning and related components will be presented. 
In addition, first results of the V&V from the first cycle are shown. 
The deliverable is structured as follows: 
In section 2, common concepts for trajectory planning are presented. The 
methods are divided into sampling-based and continuous methods. In 
addition, it is described, how collisions with obstacles of any kind will be 
avoided. Section 3 contains a description of the risk assessment and the 
resulting safety corridors. In section 4, offline and online learning algorithms 
are described. 
 

2 Trajectory planning 

In the following, common concepts for trajectory planning are described. 
Therefor a division between sampling-based and continuous methods is 
made. First however, necessary requirements are discussed. 
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2.1 Environment model and decider module 

In order to plan trajectories so, that the resulting vehicle behaviour is safe 
and comfortable, the trajectories must be evaluated with sufficient accuracy. 
For this purpose, it must be possible to ascertain whether the trajectory is 
collision-free and does not lead to collisions with other vehicles, pedestrians 
etc. In addition, it must be possible to check whether the trajectory will keep 
the vehicle in between the road boundaries. For this purpose, an 
environment model is required. There are different approaches to model the 
environment. 
The team “MIT” used a “Drivability Map” (Kuwata, Y. et al. 2009). during the 
DARPA Urban Challenge. This “Drivability Map” is a discrete representation of 
two-dimensional space. Each cell within the grid carries information, whether 
the cell is a forbidden zone or not, also cells which are drivable contain costs, 
to evaluate a trajectory passing these cells. 
Figure 1 illustrates an example of the drivability map. 
 

 
Figure 1: Drivability Map (Kuwata, Y. et al. 2009). 

 
Another possibility for environment modelling, offer so-called “corridors”. In 
(Ziegler J. et al. 2014) such a corridor consists of polygonal lines, 
representing the boundaries of the lane. 

Another requirement is a decision making module, which is preceded to the 
trajectory planner. Such a module is needed, since traffic situations become 
arbitrarily complex, so decisions about future actions must be made. This 
module is intended to describe the “rough” driving method, e.g. a maneuver 
class. In AutoMate, driving maneuvers are to be specified (refer to 
deliverable 3.2). The decider module has to find the most appropriate 
maneuver, based on criteria such as risk assessment etc. 
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2.2 Sampling based concepts 

Rapidly Exploring Random Trees 
Rapidly Exploring Random Trees (LaValle, S. M. 1998) (RRTs) were 
developed at Iowa State University in 1998 and are one of the most widely 
used methods for trajectory and path planning. RRTs are used not only in 
autonomous driving but also in other areas of robotics. The basic idea is to 
scan the state or work space on a random based sampling scheme. The 
algorithm works as follows: 
Suppose you want to plan a trajectory for a vehicle from x! to x! and the 
vehicle model can be described roughly by the differential equation  𝑥 =
𝑓(𝑥,𝑢). First, a random point 𝑥!"#$ is generated and the point in the tree is 
selected, which is closest to 𝑥!"#$ with respect to a previously defined metric 
𝜌. Subsequently, control variables 𝑢 are randomly sampled for the next Δ𝑡 
seconds. For each sample of 𝑢, the vehicle model will be integrated. The 
resulting trajectories must, of course, be checked for collision-freeness. From 
the remaining trajectories, the one closest to the point 𝑥!"#$ with respect to 𝜌 
is selected.   
 
 
The algorithm (refer to LaValle, S. M. 1998) is summarized below: 
 

 
Algorithm 1: RRT- algorithm (LaValle, S. M. 1998). 

Figure 2 shows an example of the resulting tree of trajectories or paths. 
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Figure 2:  Resulting tree of paths from the RRT-algorithm (refer to LaValle, S. M.         
               1998). 

A tried and tested approach from the class of the RRT algorithms are so-
called closed-loop RRTs (Kuwata, Y. et al. 2008) and were used, for example 
by the MIT team at the 2007 DARPA Urban Challenge. 
 
Instead of the control variables, the setpoint variables for an underlying 
steering controller are sampled in this approach.  
 

 
Figure 3: Steering Controller with Vehicle model for closed loop RRT. 

 
The reference path r is determined randomly. With the aid of a steering controller 
the path r is followed. The vehicle model ensures, that the trajectory will comply 
with the vehicle dynamics. The sampling of reference paths r yields a tree of 
trajectories, from which the best is selected. This is illustrated below: 
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Figure 4: Visualisation of the closed-loop-RRT algorithm.  

 
Finally, the best alternative in the tree of possible trajectories must be found. One 
possibility for this is to apply tree search algorithms. As an alternative, it is possible 
to use the RRT* algorithm (Karaman, S et al. 2011) which determines the optimal 
solution according to a defined cost function. 
 
State Lattices 
 
Another possibility for path planning is the use of so-called “state lattices” 
(Pivtoraiko, M., Kelly, A., 2005). A tree of previously defined movement 
primitives is searched. Each combination of these primitives is checked for validity 
with respect to collision-free and dynamic constraints. Finally, from the remaining 
combinations, the one which is optimal with regard to a certain cost function is 
selected, refer to figure 5. 
 



AutoMate Automation	as	accepted	and	trusted	TeamMate	to	enhance		
traffic	safety	and	efficiency 

 

<28/06/2017> Named Distribution Only 
Proj. No: 690705 

Page 9 of 35 
 

 

 
Figure 5: State Lattices approach for path searching (Pivtoraiko, M., Kelly, A., 2005). 

 
The pictures a) –d) show how different positions in the workspace can be 
achieved by the application of the motion primitives. In addition, it can be 
seen, that the motion primitives are selected in such a way, that discrete 
spatial positions (in figure 6 equidistant 2D-points) are achieved. 
 
A canonical set for planning of real vehicle trajectories could for example look 
like as in figure 6 (Ziegler J. and Stiller C. 2009). 
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Figure 6: a) Grid resulting from motion primitives. b) Motion primitives for real     
                         vehicle trajectories. Refer to (Ziegler J. and Stiller C. 2009). 

 
In figure 6 a) the resulting grid of achievable points can be recognized. In b), 
the motion primitives can be seen. 
 
The grid shown in figure 6 does not contain any temporal information, thus it 
can only deal with pure path planning problems. To incorporate temporal 
information, a discrete set of velocities is selected as shown in Illustration 6. 
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Figure 7: Discrete velocities for the incorporation of temporal information [6]. 

 
 
For the explanation, it is first assumed that only constant velocities are 
sampled, as shown in Figure 7 below. In this case, the speeds are multiples 
of the fraction Δ𝑙/Δ𝑡, in the example  𝑣! = 2Δ𝑙/Δ𝑡, 𝑣! = 1Δ𝑙/Δ𝑡, 𝑣! = Δ𝑙/Δt. In 
order to generate a jerk-minimal behaviour, polynomials can be used instead 
of constant velocities (figure 6 right above). 

2.3 Continous concepts 

Potential Fields 
 
The method of the potential fields (see for example, Espitia H. E. and 
Sofrony J. I. 2011) represents a possibility for continuous path planning. If a 
path from A to B shall be planned, an attractive potential is assigned to the 
target point. In order to avoid collisions with obstacles, obstacles are 
assigned a repulsive  potential. The assignment of potential takes place via 
so-called “potential functions”. A potential function for attraction may, for 
example, be as follows 
 

𝑈!"" 𝑝, 𝑣 =  𝛼! 𝑝!"# 𝑡 − 𝑝 𝑡 ! + 𝛼! 𝑣!"# 𝑡 − 𝑣 𝑡 !. 
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Here, a target speed is additionally included, to which the robot is to be 
accelerated. The  path is now obtained by the gradient formation of the 
potential function, the resulting so-called “virtual force field” can be 
calculated as follows 
 

𝑭!"",! = −∇𝒑  𝑈!"" 𝒑,𝒗 = − !!!"" 𝒑,𝒗
!𝒑

  
 
 

𝑭!"",! = −∇𝒗𝑈!"" 𝒑,𝒗 = − !!!"" 𝒑,𝒗
!𝒗

 . 
 

Correspondingly, the repulsive force fields results 
 

𝑭!"",! = −∇𝒑  𝑈!"# 𝒑,𝒗  
 
     

 𝑭!"",! = −∇𝒗  𝑈!"# 𝒑,𝒗 . 
 

The absolute force fields, can be obtained by addition 
 

𝑭!"!#$ = 𝑭!"" + 𝑭!"#. 
 
This procedure merely describes the basic principles of the potential field 
method. There are many modifications which lead to corresponding 
improvements in various cases. 
 
Optimal Control Planner 
 
An example of a continuous concept for trajectory planning is the method 
described in (Ziegler J. et al. 2014) Here the trajectory is approximated by 
2D points 𝑥! = 𝑥 𝑡! ,   𝑘 = 1…𝑛 and linearly interpolated between this points. 
Velocities, accelerations etc. are determined by differential quotients. The 
variables 𝑥! now serve as variables of an optimisation problem, which is set 
up in such a way, that a defined cost function is minimised and certain 
constraints are statisfied. The Cost function is as follows 
 

𝐿 = 𝑗!""# + 𝑗!"# + 𝑗!"" + 𝑗!"#$ + 𝑗!"#$  𝑑𝑡.
!

!
  

 
Where 𝑗!""! is a cost term, which contributes to drive the vehicle in the 
middle between the lane’ s boundary lines. 
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𝑗!""#(𝑥(𝑡)) =  𝑤!""#
!
!
𝑑!"#$ 𝑥 𝑡 + 𝑑!"#!! 𝑥 𝑡

!
. 

 
The functions 𝑑!"#$, 𝑑!"#!! are signed distance functions. The driving corridor 
consists of two boundary lines (modelled as polygonal lines) and the 
functions 𝑑! are positive for all points on the left of the corresponding line 𝑖 
and negative for all points on the right. The term 

𝑗!"# 𝑥 𝑡 = 𝑤!"#  𝒗!"# 𝑥 𝑡 − 𝒙 𝑡 !, 
 

will help to reach the current top speed. The vector 𝑣!"# corresponds to the 
actual top speed. For more details refer to (Ziegler J. et al. 2014). The 
acceleration term  
 

𝑗!"" 𝑥 𝑡 = 𝑤!""  𝑥 𝑡 ! 
 

contributes to minimise the acceleration and the jerk term  
 

𝑗!"#$ 𝑥 𝑡 = 𝑤!"#$  𝒙 𝑡 ! 
 
 

contributes to minimise the jerk. And finally the term for the yawrate 
 

𝑗!"#$ = 𝑤!"#$   𝜓 𝑡 !. 
 

The variables 𝑤! are weighting factors.  
 
To avoid collisions with other vehicles, their positions are predicted for time 
intervals. Subsequently, obstacle polygons are defined to approximate their 
shape for time intervals (see figure 8). 

 
Figure 8: Polygons for collison avoidance with other vehicles (Ziegler J. et al. 2014). 
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In the next step, the shape of the ego vehicle has to be approximated. For 
this, circles are used, see figure 9. 
 

 
Figure 9: Circles to approximate the vehicles shape (Ziegler J. et al. 2014). 

A number of 𝑘 circles are chosen to approximate the vehicle shape in the 
interval of [𝑥! , 𝑥!!!]. In the case of 𝑛 discrete points and thus 𝑛 − 1 intervals, 
𝑘(𝑛 − 1) circles are obtained. In the case of 𝑜 obstacles, 𝑘𝑜 𝑛 − 1  constraints 
are obtained. In order to avoid collisions, it is required that the distance 
between the center points of the circles and obstacles corresponds at least to 
the radius of the circles. Accordingly, the constraints for collision avoidance 
are as follows: 

𝑑! ≥ 𝑟!"! , 𝑖 = 1… 𝑘𝑜 𝑛 − 1 . 
 

In addition, there are the following constraints for curvature and 
acceleration: 

𝜅 𝑡 ≤ 𝜅!"# , 𝑖 = 1…𝑛 
 

𝜅 𝑡 ≥ 𝜅!"#, 𝑖 = 1…𝑛. 
 

‖𝑥‖! ≤ 𝑎!"# , 𝑖 = 1…𝑛. 
 

Accordingly, there are overall 3𝑛 + 𝑘𝑜(𝑛 − 1) constraints.  The resulting 
optimisation problem may e.g. be solved through a least squares solver. 
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2.4 First results 

As mentioned, this deliverable will present first results. The status of task 
3.4, which is mainly about trajectory planning, can be summarized as 
follows: The concept of the optimal control planner has been selected and 
programming has also started. For this purpose, a simulation environment 
was created in Matlab to develop and test the planner on real data. In order 
to obtain satisfactory results, further errors have to be removed from the 
code, as well as suitable parameters for costs, etc. have to be found. Figures 
10-12 show examples of the preliminary results. 

 
Figure 10: Path of the trajectory. 
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Figure 11: Velocity of the trajectory. 

 
Figure 12: Acceleration of the trajectory 

The path of the trajectory can be seen in the figure 10. The vehicle starts 
with lateral offset to the road and then enters the roadway. The trajectory 
speed approaches the speed limit of 14m/s as desired. The acceleration 
required for this purpose remains below 2m/s^2 and thus does not reach too 
high values. 
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3 Online risk assessment 

The purpose of online risk assessment in AutoMate is the calculation of safety 
corridors that quantify the safety of the current and near-future traffic 
situation according to a metric of risk. These safety corridors will be used by 
the TeamMate car to assess and plan safe and feasible trajectories, leading 
to a set of algorithms that allow identifying safe and reasonable 
arrangements of the driving process. In Deliverable D3.1 “Metrics and plan 
for V&V of the concepts and algorithms in the 1st cycle”, we provided a first 
generic and high level view for online risk assessment. In this deliverable, we 
will refine this high-level view and provide more concrete definitions of the 
required input and the provided output, as well as a first description of how 
the output are obtained in the first cycle of AutoMate. 
 

3.1 Idea and Metric 

For the first phase in AutoMate, we implement online risk assessment using 
an abstract metric for risk based on the probability of collision.  To provide 
some intuition, the general idea for online risk assessment in the first cycle is 
as follows (see Figure 1 for an example): 
 
We generate a set of safety regions, one related to the road boundaries, and 
each one for each traffic participant and obstacle in the vicinity of the 
TeamMate vehicle. Each safety region defines a region in which the 
probability of collision between the TeamMate car and the single object 
corresponding to the safety region is limited by a user-defined threshold 𝛿: 
𝑃 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑇𝑒𝑎𝑚𝑀𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑛𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 ≤ 𝛿. The safety corridor is then 
defined as the conjunction of these regions. We note that this metric has 
shortcomings, in that it is possible that 
𝑃 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑇𝑒𝑎𝑚𝑀𝑎𝑡𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑛𝑑 𝒂𝒏𝒚 𝑜𝑏𝑗𝑒𝑐𝑡 > 𝛿. We will address this 
issue in future cycles of AutoMate (c.f. 3.5).  

 
Figure 1: Exemplary visualization of a safety corridor based on a metric for the probability of 
collision. The safety corridor is the conjunction (purple) of (for visualization purposes 
arbitrarily cropped) independent safety regions, one for the road boundaries (red), and each 
one of the other traffic participants, depending on the beliefs about the world. Each safety 
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region provides an upper bound 𝜹 for the collision probability. The safety corridor as a 
conjunction also provides an upper bound on the collision probability, which however 
surpasses 𝜹. 

3.2 Required Input 

For the first cycle in AutoMate, we base online risk assessment on the 
assumption and requirement that at each point in time 𝑡, input is provided in 
the form of a beliefs about the world in terms of a world model 𝒘!, and 
beliefs about the future spatial and temporal evolution of the traffic scene 
𝒆!!!:!!! up to a number of 𝑛 timesteps, in the following simply referred to as 
episode (an visual example is provided in Figure 2). 
 

 
Figure 2: Exemplary visualization of the required input in terms of a world model 𝒘𝒕 and an 
episode 𝒆𝒕!𝟏:𝒕!𝒏. For online risk assessment, we assume that the marginalized belief states 
over the positions of other traffic participants and objects at different time steps can be 
reasonable represented as bivariate Gaussian distributions. The TeamMate vehicle is 
represented by the orange vehicle. 

 
More specifically, we assume that the world model 𝒘! provides the following 
information: 

• Let 𝒐!:! denote the history of sensor observations and other evidence 
collected by the TeamMate vehicle up to 𝑡. The world model 𝒘! is 
assumed to provide a belief state 𝑝 𝑋!"! ,𝑌!"! ,Θ!"! |𝒐!:!  for the current 
location of the TeamMate vehicle in terms of Cartesian x- and y-
coordinates and its current orientation in terms of a yaw angle 𝜃, in 
respect to the x-axis.  

• Access to a map 𝑀, describing the static world. For online risk 
assessment, this map is assumed to be correct. It is furthermore 
assumed that at each point in time 𝑡, the origin of the map is centred 
on the mean position of the TeamMate vehicle and the x-axis is aligned 
with its mean orientation. Due to the uncertainties concerning the 
TeamMate vehicles true position and orientation, we can accept the 
mean position and orientation of the TeamMate vehicle as correct, and 
instead treat corresponding uncertainties as uncertainties concerning 
the position and orientation of the map. 
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• Let 𝒗 = 𝑣! ,… , 𝑣!  denote a set of traffic participants and static objects 
in the vicinity of the TeamMate vehicle. For each object 𝑣 ∈ 𝒗, the world 
model 𝑤! is assumed to provide a belief state 𝑝 𝑋!! ,𝑌!! ,Θ!! |𝒐!:!  for its 
position and orientation. Based on the assumption that these beliefs 
are obtained from the TeamMate’s sensor platform, we furthermore 
assume that the uncertainties about the state of the TeamMate vehicle 
itself do not affect these beliefs. The world model is furthermore 
assumed to provide the probability of existence 𝑃 𝐸!!|𝒐!:!  and belief 
states about the size for each object 𝑣 ∈ 𝑉 in terms of a conditional 
probability density function over the width 𝑝 𝑊!!|𝒐!:!  and length 
𝑝 𝐿!! |𝒐!:! .  

 
Concerning the future spatial and temporal evolution of the traffic scene, for 
online risk assessment in the first cycle2, we assume that an episode 𝒆!!!:!!! 
provides the following information: 

• For each object 𝑣 ∈ 𝒗, an episode 𝒆!!!:!!! is assumed to provide belief 
states for the Cartesian coordinates (either globally or relative to the 
TeamMate vehicle) of the geometrical centre and the orientation of the 
object 𝑣 at certain points in the future 𝑝 𝑋!!!! ,𝑌!!!! ,Θ!!!!|𝒐!:! , 𝑖 = 0,… ,𝑛 up 
to a user-defined prediction horizon 𝑛 ≥ 1.  

3.3 Provided Output 

As before, let 𝑛 denote a desired prediction horizon and 𝑚 denote the 
number of objects in the vicinity of the TeamMate vehicle. For the first 
version of online risk assessment and in respect to the metric introduced in 
Section 3.1, the output of the online risk assessment is defined as a set 𝒄!:!!! 
of safety corridors 𝒄!:!!! = 𝒄!:!!!, 𝒄!!!:!!!,… , 𝒄!!!!!:!!! . Each safety corridor 
𝒄!:!!!, 𝑡 ≤ 𝑖 ≤ 𝑛 − 1 defines a region over a temporal interval 𝑖, 𝑖 + 1  for which 
the probability of collision between the TeamMate vehicle and a single object 
𝑣 ∈ 𝒗 or the road boundaries is below a set of user-defined thresholds. 
Formally, each safety corridor 𝒄!:!!! is defined as a set of polygonal lines 
𝒄!:!!! = 𝐿!!:!!!, 𝐿!!:!!!,… , 𝐿!!:!!! , where a polygonal line 𝐿 should be understood as 
a closed broken line, i.e. a polygon, composed of a finite number of line 
segments, specified by a sequence of points 𝐿 = 𝐴!,… ,𝐴! , where each 𝐴! ∈ 𝐿 
is defined as a pair 𝐴! = 𝑥! ,𝑦!  denoting the x- and y-coordinates in a 
Cartesian coordinate system.  
 
For a safety corridor 𝒄!:!!! = 𝐿!!:!!!, 𝐿!!:!!!,… , 𝐿!!:!!! , 𝐿!!:!!! denotes a polygonal 
line derived from the road boundaries, that encloses a region in which the 

                                   
2 We expect the required input to be extended for future versions of online 
risk assessment. 
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probability of collision with the road boundaries is below a threshold 𝛿!. Each 
𝐿!!:!!!, 𝑗 = 1,… ,𝑚 denotes a polygonal line that excludes a region for which the 
probability of collision with a corresponding object is below a threshold 𝛿!. A 
visual example of a safety corridor is provided in Figure 3. We note that a 
safety corridor abstracts from the dimension of the TeamMate vehicle, which 
should instead be taken into account by the path planning algorithms. 
 
If required for path planning, a safety corridor 𝒄!:!!! = 𝐿! , 𝐿!!:!!!,… , 𝐿!!:!!!  can be 
further reduced to a single polygonal line, enclosing the area of collision-free 
space, or a set of two polygonal lines representing the left and right 
boundary of a corridor enclosing the area of collision-free space. 
 

 
Figure 3: Exemplary visualization of a safety corridor for a temporal interval 𝒕 + 𝟏, 𝒕 + 𝟐 , 
composed of a polyline 𝑳𝑹𝒕:𝒕!𝒏 associated with the lane boundaries and two polylines 𝑳𝟏𝒕!𝟏:𝒕!𝟐 
(blue) and 𝑳𝟐𝒕!𝟏:𝒕!𝟐 (green) associated with two traffic participants. The grey hachured area 
represents the area of collision-free travel. 

3.4 Calculation of a Safety Corridor 

Within the first cycle, online risk assessment is implemented as a software 
component based on the pseudo-code provided in Table 1, i.e., as a function 
that takes as input the current world model 𝒘! and an episode 𝒆!:!!! and 
provides as output a collection of safety corridors 𝒄!:!!! = 𝒄!:!!!,… , 𝒄!!!!!:!!! . 
The general algorithm can be separated into the calculation of the polygon 
𝐿!!:!!! encompassing the region for which the probability of a collision with the 
road boundary is below the threshold 𝛿! and the polygons 𝐿!!:!!!,… , 𝐿!!:!!!, each 
excluding the region for which the probability of a collision with the respected 
object is below the threshold 𝛿!. 
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Table 1: Pseudo code for online risk assessment in the first cycle of AutoMate. 

Algorithm: Online risk assessment 
Procedure derive_safety_corridors ( 
𝒘!  // World model for the current time step, including a set of belief 

states (omitting the dependence on 𝒐!:!)  
𝑝 𝑋!! ,𝑌!! ,Θ!! ,𝑝 𝐸!! ,𝑝 𝐿!! ,𝑝 𝑊!! , 𝑖 = 0,… ,𝑛, 𝑗 = 1,… ,𝑚, where 𝑚 denotes 
the number of vehicles in the vicinity of the driver, a map 𝑀 centred 
on the position of the TeamMate vehicle, and a belief state 
𝑝 𝑋!"! ,𝑌!"! ,Θ!"!  concerning position and orientation of the TeamMate 
vehicle. 

𝒆!!!:!!! // Episode for the current time step, including a set of belief states 
(omitting the dependence on 𝒐!:!) 𝑝 𝑋!!!! ,𝑌!!!! ,Θ!!!! , 𝑖 = 1,… ,𝑛, 𝑗 =
1,… ,𝑚, where 𝑛 denotes the prediction horizon and 𝑚 denotes the 
number of vehicles in the vicinity of the driver. 

) 
1 𝐿!!:!!! ← 𝑑𝑒𝑟𝑖𝑣𝑒_𝑙𝑎𝑛𝑒_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦_𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒(𝑝 𝑋!"! ,𝑌!"! ,Θ!"! ,𝑀)  
2 for 𝑖 = 0,… ,𝑛 − 1 
3   for each 𝑗 = 1,… ,𝑚, where 𝑝 𝐸!! ≥ 𝛿! 
4     𝐿!!!! ← 𝑑𝑒𝑟𝑖𝑣𝑒_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦( 𝑝 𝑋!!!! ,𝑌!!!! ,Θ!!!!  ,𝑝 𝐿!! ,𝑝 𝑊!! ) 
5     𝐿!!!!!! ← 𝑑𝑒𝑟𝑖𝑣𝑒_𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦( 𝑝 𝑋!!!!!!,𝑌!!!!!!,Θ!!!!!! 𝑝 𝐿!! ,𝑝 𝑊!!  ) 
6     𝐿!!!!:!!!!! ← 𝑑𝑒𝑟𝑖𝑣𝑒_𝑐𝑜𝑛𝑣𝑒𝑐_ℎ𝑢𝑙𝑙(𝐿!!!! , 𝐿!!!!!!) 
7   𝒄!!!,!!!!! ← 𝐿!!:!!!, 𝐿!!!!:!!!!!,… , 𝐿!!!!:!!!!!  
8 𝒄!:!!! ← 𝒄!:!!!,… , 𝒄!!!!!:!!!   
9 return 𝒄!:!!! 
 
The different components of the algorithm will be further detailed in the 
following sub-sections. 

3.4.1 Deriving the Safety Regions for the Lane Boundary 

As a first step, a polyline needs to be derived from the map 𝑀 in respect to 
the current beliefs about the TeamMate vehicle 𝑝 𝑋!"! ,𝑌!"! ,Θ!"! |𝒐!:! . In the 
case of the ULM demonstrator, it is assumed that such a polyline is readily 
available and provided as additional component of the world model 𝒘!. For 
the demonstrators without such a road boundary polyline, we implemented 
the system in Figure 4 for the first cycle of the project. The system consists 
of 3 Modules: the Map Extractor, the Map Matching and the Road Boundary 
Polyline Generator. 
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Figure 4: Overview of the system for road boundery ployline generation 

The map extractor extracts the map data modelled using the OpenDrive 
format. The extracted map data are saved into a data structure following the 
OpenDrive specification. The OpenDrive specification models the road as a 
set of lanes. Each road has a reference line centred in the middle of the road. 
The reference line can be modelled as a straight line, a spiral or a cubic 
polynom, etc. Each lane belonging to the road is parameterized using an 
offset to the reference line of the road. More information about the lane as 
the type of the lane marking and the lane type (e.g. driving, emergency, 
etc.) is provided. Further information on the OpenDrive specification can be 
found in (Dupuis et al. 2015) 
 
After extracting the map data, the ego-vehicle pose is integrated into the 
map. For this purpose, the lane with the minimal distance to the ego-vehicle 
is set as the ego-lane. The road associated to the ego-lane is set as the ego-
road. Next, the ego-road boundary polyline 𝐿!!:!!! is estimated by sampling 
from the road border parametric equation in the driving direction with a 
constant sampling step. Figure 5 shows an example of the generated road 
boundary polyline projected into the camera image. The road boundary from 
the map (blue polyline) doesn’t accurately match the road border in the 
camera image because of sensor calibration and ego-pose estimation errors. 
 
In the second cycle of the project, we will address the uncertainties 
generated by the sensor calibration and ego-pose estimation. Furthermore, 
we will combine the map data with information generated by the ego vehicle 
sensors and integrate the generated road boundary polyline into the safety 
corridor for mobile objects. The safety corridor for mobile objects is 
described in details in the subsection 3.4.2. 



AutoMate Automation	as	accepted	and	trusted	TeamMate	to	enhance		
traffic	safety	and	efficiency 

 

<28/06/2017> Named Distribution Only 
Proj. No: 690705 

Page 23 of 35 

 

 
Figure 5: example of road boundary polyline for the ego-vehicle projected into the 

the camera image (see blue polyline) 

 

3.4.2 Deriving the Safety Regions for Objects near the TeamMate 
Vehicle 

For each safety corridor 𝒄!!!:!!!!! and each object 𝑣 ∈ 𝒗, we need to derive a 
polygonal line 𝐿!!!!:!!!!! that excludes a region for which the probability of 
collision between the TeamMate vehicle and an object 𝑣 within the temporal 
interval 𝑡 + 𝑖, 𝑡 + 𝑖 + 1  is below a threshold 𝛿!. We propose to derive 𝐿!!!!:!!!!! 
from two belief states 𝑝 𝑋!!!! ,𝑌!!!!|𝒐!:!  and 𝑝 𝑋!!!!!!,𝑌!!!!!!|𝒐!:!  provided by the 
episode 𝒆!!!:!!!. For the first version of online risk assessment, we assume 
that each belief state 𝑝 𝑋!

! ,𝑌!
!|𝒐!:! , 𝑡 ≤ 𝑗 ≤ 𝑡 + 𝑛  provided by the episode 

𝒆!!!:!!! will be represented as a bivariate normal distribution, such that 
𝑝 𝑋!

! ,𝑌!
!|𝒐!:! = 𝑝 𝑋!

! ,𝑌!
! ,𝜃!

!|𝒐!:! 𝑑𝜃!
! =𝒩 𝝁!

! , Σ!
! . 

 
Based on the covariance Σ!

!, we can derive an elliptical contour, that encloses 
1− 𝛿! ∗ 100% of the probability mass concerning the location of the 

geometrical centre of an object 𝑣. More specifically, let 𝒙 = 𝑥,𝑦 ! denote a 
Cartesian coordinate, the interior of an ellipse that encompass 1− 𝛿! ∗ 100% 
of the probability mass of the Gaussian is specified by the coordinates that 
satisfy 𝒙− 𝝁 !Σ!! 𝒙− 𝝁 ≤ χ!! 1− 𝛿! . For deriving the contour, we perform an 
eigen-decomposition of the covariance matrix Σ!

! = 𝑈!Λ!𝑈!!, such that the 
columns of 𝑈! are (normalized) unit eigenvectors and Λ! is a diagonal matrix 
of the eigenvalues.  
 



AutoMate Automation	as	accepted	and	trusted	TeamMate	to	enhance		
traffic	safety	and	efficiency 

 

<28/06/2017> Named Distribution Only 
Proj. No: 690705 

Page 24 of 35 

 

Let’s assume that we have an elliptical contour that encloses 1− 𝛿! ∗ 100% 
of the probability mass concerning the location of the geometrical centre of 
an object 𝑣. To take into account the potential size of the object, the contour 
needs to be augmented by the corresponding size of the object. For now, this 
will be done by extending the eigenvalues according to the length of the 
vector given by the length and width of the vehicle, e.g. by using the 
maximum of the 𝑧!.!" quantile of both our beliefs about the length 𝑝 𝐿!! |𝒐!:!  
and width 𝑝 𝑊!!|𝒐!:! . 
 
Lastly, the resulting augmented contour is approximated by a polyline 𝐿!

!  by 
calculating a set of equidistant points on the augmented density contour. 
Such a polyline 𝐿!

!  now approximately encloses an area, such that we would 
expect a collision outside of the area with 𝛿!. Performing this operations for 
both 𝑝 𝑋!!!! ,𝑌!!!!|𝒐!:!  and 𝑝 𝑋!!!!!!,𝑌!!!!!!|𝒐!:!  results in two polylines 𝐿!!!! and 
𝐿!!!!!! (an example is provided in Figure 6). 
 

 
Figure 6: Resulting polylines 𝑳𝒗𝒕!𝒊 and 𝑳𝒗𝒕!𝒊!𝟏, approximating the region of collision for a 
vehicle 𝒗 ∈ 𝑽 at the boundaries of a temporal interval 𝒕 + 𝒊, 𝒕 + 𝒊 + 𝟏 . 

 
In the next step, the two polylines 𝐿!!!! and 𝐿!!!!!! need to be combined into a 
single polyline 𝐿!!!!:!!!!! that approximates the density contour of the temporal 
interval 𝑡 + 𝑖, 𝑡 + 𝑖 + 1 . For the first version of the online risk assessment, this 
is done by calculating the convex hull of both polylines (Figure 7).  
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Figure 7: The polyline 𝑳𝒕!𝒊:𝒕!𝒊!𝟏 approximating the potential locations of a vehicle 𝒗 ∈ 𝑽 within 
a temporal interval 𝒕 + 𝒊, 𝒕 + 𝒊 + 𝟏  , derived as the convex hull of 𝑳𝒗𝒕!𝒊 and 𝑳𝒗𝒕!𝒊!𝟏. 

 
The safety corridor 𝒄!:!!! for the temporal interval 𝑖, 𝑖 + 1  is then composed of 
the polygon 𝐿!!:!!! enclosing the region for which the probability of a collision 
with the road boundary is below the threshold 𝛿! and the polygons 
𝐿!!:!!!,… , 𝐿!!:!!!, each excluding the region for which the probability of a collision 
with the respected object, such that 𝒄!:!!! = 𝐿!!:!!!, 𝐿!!:!!!,… , 𝐿!!:!!! . If required 
for path planning, each safety corridor 𝒄!:!!! = 𝐿! , 𝐿!!:!!!,… , 𝐿!!:!!!  can be further 
reduced to a single polygonal line, enclosing the area of collision-free space, 
or a set of two polygonal lines representing the left and right boundary of a 
corridor enclosing the area of collision-free space. 

3.5 Implementation, Verification and Validation for the First Cycle 

As of now, online risk assessment has been implemented for surrounding 
objects under the assumption that the necessary input can be provided 
(Figure 8). The corresponding functionality of online risk assessment has 
been tested using inputs provided by the SILAB simulation environment used 
at the OFFIS Institute for Information Technology, with episodes obtained 
using the Constant Yaw and Acceleration (CYRA) motion model (described in 
D2.2 “Sensor Platform and Models incl. V&V results from 1st cycle”). 
 

 
Figure 8: Screenshot of an exemplary visualization of online risk assessment. The 
coloured polygons represent the safety corridor for correspondingly coloured 
vehicles in the vicinity of the TeamMate vehicle (white rectangle) for the temporal 



AutoMate Automation	as	accepted	and	trusted	TeamMate	to	enhance		
traffic	safety	and	efficiency 

 

<28/06/2017> Named Distribution Only 
Proj. No: 690705 

Page 26 of 35 

 

interval 𝒕 + 𝟏𝒔, 𝒕 + 𝟐𝒔 . Blue lines indicate heading vectors, the purple line represents 
the centerline of a two-lane motorway. 

 
For validation purposes, we tested the preliminary correctness of online risk 
assessment on data sets obtained in driving studies in the SILAB simulation 
environment. The data set comprises 295123 training samples, recorded 
with a frequency of 60Hz, with each sample representing the necessary input 
of up to eight vehicles in the vicinity of the TeamMate vehicle, maximal two 
vehicles on the current and adjacent lanes, both in front and behind the 
TeamMate vehicle. 
 
At each time step 𝑡, online risk assessment was used to compute the safety 
polygons for each vehicle in the vicinity of the TeamMate vehicle and ten 
prediction intervals 𝑡+ 0𝑠, 𝑡+ 1𝑠 , 𝑡+ 1𝑠, 𝑡+ 2𝑠 ,… , 𝑡+ 9𝑠, 𝑡+ 10𝑠 . At each 
subsequent time step 𝑡 + 𝑛, we then checked, whether the vehicle was inside 
the corresponding safety polygon estimated by the online risk assessment. 
For this, we defined that a vehicle was inside a safety interval, if all four 
corners of the bounding box of the vehicle were located inside the safety 
polygon. The resulting data was aggregated over all different vehicles to 
derive the error-rates for each temporal interval. The results are summarized 
in Table 2. We note that limited (simulated) sensor range of ∓200m for the 
detection of surrounding vehicles make it possible that a vehicle was outside 
the sensor range prior to entering temporal intervals. 
 
Table 2: Validation results of online risk assessment for different temporal 
intervals using a threshold 𝜹𝒗 = 𝟎.𝟎𝟓, aggregated over all vehicles. 

Temporal  
Interval 

Vehicles outside of 
safety interval [#] 

Vehicles inside of 
safety interval [#] 

Error-
Rate [%] 

𝑡+ 0𝑠, 𝑡+ 1𝑠   56861 75131197 0.075625 
𝑡+ 1𝑠, 𝑡+ 2𝑠   607406 72958919 0.825658 
𝑡+ 2𝑠, 𝑡+ 3𝑠 		 2624724 69487580 3.63977 
𝑡+ 3𝑠, 𝑡+ 4𝑠 		 6717195 64099287 9.48536 
𝑡+ 4𝑠, 𝑡+ 5𝑠 		 11147895 58489173 16.0086 
𝑡+ 5𝑠, 𝑡+ 6𝑠 		 14870628 53679017 21.6932 
𝑡+ 6𝑠, 𝑡+ 7𝑠 		 18169861 49339793 26.9145 
𝑡+ 7𝑠, 𝑡+ 8𝑠  		 21305197 45174097 32.0479 
𝑡+ 8𝑠, 𝑡+ 9𝑠 		 24423167 41038227 37.3093 
𝑡+ 9𝑠, 𝑡+ 10𝑠 		 28100175 36565631 43.4545 
 
As apparent from Table 2, the error-rate quickly rises with extended 
temporal horizon and exceeds the selected threshold for the probability of 
collision 𝛿! = 0.05 for temporal intervals above 3 seconds. We expect these 
results to be improved with the improvement of the underlying vehicle 
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models. We can trivially improve the performance of the online risk 
assessment by extending the size of the safety regions. As such, validation 
must be counterbalanced by a simultaneous maximization of the free space. 
We will address this issue in the next cycle. 
 
Concerning verification, this document has defined   

• the necessary input for online risk assessment in terms of a world 
model 𝒘!, 

• the definition of the metric and corresponding output of online risk 
assessment in terms of a set of safety corridors 
𝒄!:!!! = 𝒄!,!!!,… , 𝒄!!!!!,!!! , 

• and a basic overview of the expected implementation of online risk 
assessments in terms of algorithms. 

3.6 Potential Improvements for Future Cycles  

Although the implementation of online risk assessment as described in this 
deliverable is not completed yet, there exist several potential improvements, 
to be addressed in future cycles of AutoMate. 
 
First and foremost, it should be apparent that the quality of online risk 
assessment primarily depends on the quality of the provided input, i.e., the 
world state 𝒘! and especially the episode 𝒆!!!:!!!. Under the assumption that 
the episode is derived using vehicle-, situation-, and driver-models 
developed in WP2, any improvement concerning these models in respect to 
the prediction of the future evolution of the traffic scene, will consequently 
improve the performance of online risk assessment.  
 
When assuming the quality of the episode as fixed, online risk assessment 
could be improved by a better approximation of the safety corridors itself. 
For the first cycle, the belief states 𝑝 𝑋!

! ,𝑌!
!|𝒐!:!  for an object 𝑣 ∈ 𝑉 are 

approximated by a bivariate Gaussian distribution and the safety region will 
be extended without considering potential beliefs about the orientation of the 
object given its location  𝑝 Θ!

! |𝑋!
! ,𝑌!

! ,𝒐!:! . For future cycles, we will test to 
both incorporate the beliefs 𝑝 Θ!

! |𝑥!
! ,𝑦!

! ,𝒐!:!  for a given points on the density 
contour and to replace the density contour estimation by a density 
estimation based on sampling from the extended belief 𝑝 𝑋!

! ,𝑌!
! ,Θ!

! |𝒐!:! . We 
additionally note that using the convex hull to approximate a polyline 
𝐿!!!:!!!!! may be a poor approximation of the safety region that allow for 
potential improvements, e.g. by a linear interpolation of the belief states 
coupled with an approximation of a concave hull. 
 



AutoMate Automation	as	accepted	and	trusted	TeamMate	to	enhance		
traffic	safety	and	efficiency 

 

<28/06/2017> Named Distribution Only 
Proj. No: 690705 

Page 28 of 35 

 

Lastly, the currently proposed metric as described in Section 3.1 has flaws. 
As each safety region only guarantees (in respect to the correctness of 
assumptions and beliefs) a collision free region for a single reference object, 
the overall probability of a collision for the conjunction follows a binomial 
distribution. As such, let 𝑋 denote the number of objects (including the road 
boundaries provided by the map as a single object) within the safety 
corridor, 𝛿 denote a global threshold of collision probability and 𝑛 denote the 
number of traffic participants and obstacles (resulting in 𝑛 + 1 safety regions 
due to the road boundaries), the probability that neither the road boundary 
nor any object is located within the safety corridor is lower-bounded by 
𝑃 𝑋 = 0 = 𝑛 + 1

0 𝛿 1− 𝛿 !, which for a threshold of 𝛿 = 0.05 and 𝑛 = 10 traffic 
participants would is only 𝑃 𝑋 = 0 = 0.569. In future versions, we will try to 
refine this metric and the notion of safety corridors to provide better lower-
bounds. A potential solution could be to interpret the independent beliefs 
about the traffic participants as a mixture of Gaussians and obtain a single 
safety region based on density estimation. 

4 Algorithms to learn from the driver 

The purpose of the algorithms to learn from the driver in AutoMate is to 
enable the system to adapt its automation strategies to the driver’s 
preferences and guarantee a human expert-like and safe driving behaviour. 
In the following it is described how the TeamMate car will learn from the 
driver during the first cycle of AutoMate.  

4.1 Idea and Required Input 

In the first cycle learning from the driver is understood as the learning of 
driving intentions e.g. “lane change left”. The learning algorithms rely on the 
probabilistic driver model developed by OFF which creates estimations about 
the intentions and future behaviour of the human drivers, namely the Driver 
Intention Recognition (DIR) model. This model is described in the 
corresponding deliverable D2.2. 
Since the intentions of the driver can’t be observed directly, for the DIR 
model it is assumed that the intentions of the driver can be interpreted as a 
hidden process. This process “emits” effects on the traffic situations which 
are observable. These observable effects can be the position of the ego 
vehicle, physical relations to other traffic participants, control actions of the 
driver, etc. The dependence of intentions and action variables on the past 
perception is described by a traditional sensor model.  
The DIR model in general models the joint density distributions over actions, 
intentions and observations over an arbitrary length 𝑇 ≥ 1 as: 
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𝑝 𝑨!:! , 𝑰!:! ,𝑶!:! = 𝑝 𝑶!|𝑨!, 𝑰! 𝑝 𝑨!, 𝑰! 𝑝 𝑶!|𝑨! , 𝑰! 𝑝 𝑨! , 𝑰!|𝑨!!!, 𝑰!!! .
!

!!!

 

Where 𝑶 = 𝑂!,… ,𝑂!!  denotes a set of continuous and/or discrete random 
variables that represent the observations of the current traffic situation,  
𝑨 = 𝐴!,… ,𝐴!!  denotes a set of continuous and/or discrete random variables 
that represent the actions of the driver, and 𝑰 = 𝐼!,… , 𝐼!!  denotes a set of 
discrete variables that represent different intentions of the driver, e.g., “lane 
following”, “lane change left”. 
The parameters of the DIR model can already be learned from multivariate 
time-series of driving data via machine-learning methods. To do so the 
necessary is usually gathered from many different drivers. Since the current 
offline learning algorithms can’t handle datasets with missing values the 
dataset has to be annotated by an expert. This means for each time point of 
a sequence of driving situations, described by 𝑶! and 𝑨! the human expert 
labels the situation with the corresponding value of 𝑰!. So, the driver’s 
intention is not hidden or missing in training data and the model can be 
learned with complete data. After the training process the model in general is 
able to recognize the driving intentions of human drivers. Since the model 
was trained with data from several drivers the recognition performance 
might be suboptimal for the individual driver, e.g. too aggressive for very 
defensive drivers. 
In cycle one, the algorithms to learn from the driver will perform an online 
learning to recalibrate the parameters of the DIR model. So the model is 
adjusted to the individual driver during the driving process to match the 
individual driving behaviour and driving preferences.  
Thus the learning algorithms require the same inputs as the DIR model or at 
least a complete description of the current traffic situation in terms of the 
world model mentioned in Section 3.2. 
For online learning the training data is not annotated by a human expert. So 
the corresponding driving intentions remain hidden and the algorithm has to 
handle incomplete data. 
During driving the online learning will receive for each point in time 𝑡 the 
current observation of the traffic situation 𝒐! (or also world model). Since we 
are assuming that each manoeuvre happens due to a driving intention the 
description of the driving situation should contain all information to tell if a 
certain manoeuvre just happened. For example, to learn the driving intention 
for a lane change we need to be able to determine when the ego vehicle 
actually changed its current lane, e.g., 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑎𝑛𝑒!!!! = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑎𝑛𝑒!. 
 
Additionally an interface to a risk assessment instance is needed in a way 
that each observed traffic situation could be label with a corresponding risk 
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value. So, it could be ensured that manoeuvres which contain too risky traffic 
situations are not considered and learning of unsafe behaviour is avoided. 

4.2 Learning Procedure 

Assuming a lane change is observed at time t (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑎𝑛𝑒!!!! =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑎𝑛𝑒!) the intention It is known. Since an actual lane change 
manoeuvre takes multiple time steps and an intention is usually formed even 
earlier, we cannot assume that whenever we are not observing that the lane 
was actually changed that the intention is not “lane change”. Instead we 
need to estimate how many previous time steps x, which were observed 
before t, should also have the intention It. 
The problem can be formulized as the following smoothing problem: 
 

𝑝 𝑰!!!|𝑶!:!  ∝  𝑝 𝑰!!!|𝑶!:!!! 𝑝 𝑶!!!!!:!|𝑰!!!  
 
For the online learning of the DIR model the driver intention is a hidden 
variable and its value is missing for training, except for the moment when 
the change of lanes is actually observed. Thus, the learning of the model 
parameters can at best be considered as a semi-supervised learning 
problem. The Expectation Maximization (EM) algorithm is one suitable 
approach to unsupervised and semi-supervised learning of the model 
parameters. We assume that for the learning every observation there can be 
only one corresponding intention, so hard EM could be applied. 
 
Considering a sequence of observations represented by 𝑋 = {𝑥!,… , 𝑥!} 
representing, a sequence of hidden states represented by = {𝑦!,… ,𝑦!} , and a 
corresponding model parameterized with Θ which defines probabilities 
𝑃!(𝑥!,… , 𝑥!,𝑦!,… ,𝑦!) hard EM in general solves the following optimization 
problem: 
 

Θ∗ = argmax
!

max
!!,…,!!

 𝑃!(𝑥!,… , 𝑥!,𝑦!,… ,𝑦!) 

 
By alternately optimizing Θ and 𝑌 a local optimum for the problem can be 
found. The general optimization algorithm is: 

1. Initialize Θ 
2. Repeat until 𝑃!(𝑥!,… , 𝑥!,𝑦!,… ,𝑦!) converges. 

a. 𝑦!,… ,𝑦! := argmax!!,…,!!  𝑃!(𝑥!,… , 𝑥!,𝑦!,… ,𝑦!) 
b. Θ := argmax!  𝑃!(𝑥!,… , 𝑥!,𝑦!,… ,𝑦!) 

 
Point a is called the E-step and is the evaluation of the expectation given the 
current parameter set Θ. For using hard EM our first E-step is to set the 
unknown values for the hidden intention to the expected intention. 
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Point b is the M-step, which modifies Θ in order to maximize the expectation 
that was computed during E-step (Bilmes J. 1998). 
 
An essential part of the online learning the updating of the parameters of the 
previously offline learned model. Let the observations 𝑋 and the hidden 
states 𝑌 model a joint density distribution similar to the DIR model. So, an 
observation at a certain time 𝑥! depends only on the hidden state at the 
same point in time 𝑦!. While the hidden state 𝑦! only depends on the state at 
the previous time step 𝑦!!!. The nodes of the resulting Bayesian Network at a 
the current time slice can be described by parameters of the form Θ!|!! and 
Θ!|!!. Where Θ!|!! expresses the probability that 𝑦! takes a certain value if 
𝑦!!! had the state 𝑖. Analogical Θ!|!! expresses the probability that 𝑥! takes a 
certain value if 𝑦! is in state 𝑖. For the case of Boolean variables each 
parameter can be described by a Beta distribution. If a variable is non-
Boolean a Dirichlet distribution can be used. 
If the parameters are learned from a data set 𝐷 the following conditional 
probability density is applicable: 

𝑝 Θ!|!! ,Θ!|!! 𝐷 = 𝑝(Θ!|!!|𝐷)𝑝(Θ!|!!|𝐷)
!

 

Since the parameters are independent from each other, 𝑝(Θ!|!!|𝐷) and 
𝑝(Θ!|!!|𝐷) can be determined for each parameter separately. 
For a Boolean variable the conditional posterior probability over the 
parameter after observing the learning data 𝐷 would also be a Beta 
distribution. 
 

𝑝 Θ!|!! 𝐷 = 𝐵𝑒𝑡𝑎(𝛼! + #!!|!! ,𝛼! + #!!|!!) 
 
Where 𝛼! and 𝛼! are the so called priors, and #!!|!! as well as #!!|!! are the 
counts that 𝑦! takes the corresponding state if 𝑦!!! was in state 0. The priors 
parameterize the Beta distribution and would be derived from a previously 
offline learned model. Due to the usage of Hard EM the at this point 𝐷 can be 
considered as fully observed, thus the counts can be obtained from the data 
set. 
The for inference the actual probability can then be computed via the Bayes-
Estimate (Koller D. and Friedman N, 2009): 

𝑝 𝑦!! 𝑦!!!!,𝐷 =
𝛼! + #!!|!!
𝛼 +  #  
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4.3 Verification and Validation for the First Cycle 

For the validation of the online learning a first implementation was applied to 
a data set containing about 19 minutes of highway driving with multiple lane 
changes. The model for recognizing the intention was simplified just to 
demonstrate the function of the algorithm. Thus it only relies on the 
observation of the lateral position of the ego car on the current lane, where 
the deviation from the lane centre is represented by the absolute value 
𝐸𝐺𝑂_𝐿𝐴𝑇_𝑃𝑂𝑆 = [0, 1.85]. The figures show the distribution for the parameter 
Θ!"#_!"#_!"#|!!!"#$_!!!"#$. Figure 7a represents the distribution from the offline 
learned model while Figure 7b visualizes the distribution after multiple new 
observations and steps of online learning. The new observations have 
changed the distribution of the parameter. 

  
Figure 9: a) Prior distribution of 𝚯𝑬𝑮𝑶_𝑳𝑨𝑻_𝑷𝑶𝑺|𝑰!𝒍𝒂𝒏𝒆_𝒄𝒉𝒂𝒏𝒈𝒆 , b) updated distribution 

 
Data of manual and automated driving of an AutoMate scenario for learning 
and validation of the algorithms and models is gathered during June and July 
2017 in the driving simulators of ULM and OFF. 
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5 Conclusion 

In this deliverable, concepts for trajectory planning as well as the therefor 
necessary risk assessment were given. In addition a concept was presented 
with which it is possible to learn online (while driving) from the driver. In the 
course of trajectory planning, the vehicle states are to be planned over a 
specific time horizon. For this purpose, the concept of the optimal control 
planner described in section 2.3 has been selected. The programming of this 
concept has already begun. First results are depicted in section 2.4. 
Concerning online risk assessment, metrics and algorithms for the estimation 
of safety corridors in the first cycle of AutoMate have been defined in Section 
3 and have been implemented for the SILAB simulation environment. First 
validation results are presented in Section 3.5. The online learning will use 
the data, which is obtained during driving to update the Bayesian driver 
model from WP2. Thus, the general driver model is adapted online to fit the 
individual driver. Concepts for determining the actually observed behaviour 
and model parameter updating are described in section 4.2. The 
implementation is ongoing. A first simplified example for updated model 
parameters is depicted in section 4.3. 
In the second cycle of the project, the implemented trajectory planning 
algorithm will be first integrated in the ULM demonstrator and tested in some 
simple traffic scenarios. In order to make the automation as autonomous as 
possible, a decider module will be switched in front of the trajectory 
scheduler. This decider module will be used for the parameterization of the 
planner according to the current scenario. Furthermore, the safety corridors 
extracted from the road boundary (Section 3.4.1) and dynamic objects 
(Section 3.4.2) will be merged and furthermore improved based on potential 
improvements of the metrics and notion of safety corridors (Section 3.6). 
The interface to the trajectory planning module will be specified and 
implemented. The online learning will be integrated in the respective 
demonstrator. It will also be modified to be able to update distributions over 
continuous variables of the driver model. The interface to the online risk 
assessment will be defined and integrated to effectively avoid learning from 
unsafe behaviour. 
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