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Executive Summary 

In the 3rd cycle, WP2, WP3 and WP4 are fed with the results of the evaluation 

process from the 2nd cycle, to deliver the final version of the enablers. Thus, 

the 3rd cycle ends with the evaluation of the final version of the demonstrators. 

This deliverable describes exactly the final state of the enablers developed in 

WP2, as well as the experiments conducted and proposed to technically 

validate them according to the validation plan and the requirements and 

metrics defined in D2.5 “Metrics & Experiments for V&V of the models in the 

3rd cycle”. 

Now, these enablers are ready to be integrated in the demonstrators (both 

vehicles and driving simulators).  

In particular, the enabler E1.1 (the DMS of CONTI partner) will be installed in 

the VED and CRF cars, as well as in the ULM driving simulator. Then, the 

enabler E1.2 (V2X communication from BIT partner) will be integrated into the 

VED vehicle. Also enablers E2.1 (Driver Intention Recognition – DIR in short – 

from OFF partner) and E3.1 (Situation and Vehicle Model, from OFF and DLR 

partners) are implemented in VED demo (and in ULM driving simulator as 

well). More details will be found in the deliverable of WP5 D5.6 “TeamMate Car 

Demonstrator after 3rd Cycle”. 

  



 

 

1 Introduction 

The activities in the Automate project have been organized in 3 cycles to 

guarantee that the maturity of the technologies developed in the project is 

iteratively increased while assessing that the progresses are consistent with 

the needs of the demonstrators and, in turn, with the overall concept and 

objectives of the project. 

As shown in Figure 1, the first 2 cycles are focused on the development and 

technical validation of the components (i.e. the enablers) performed in WP2, 

WP3 and WP4. The experience acquired in the 1st cycle (lesson learnt) has 

been used at the beginning of the 2nd cycle to review the requirements and 

metrics for the design and development of the enablers and, as a consequence, 

to improve them. As described in the document D2.4 “Sensor Platform and 

Models including V&V results from 2nd cycle”, the enablers have been integrated 

into the demonstrators in WP5 (end of the 2nd cycle,) and the performances of 

the 1st version of the demonstrators are evaluated against their baseline in 

WP6. 

Now, in the 3rd cycle, WP2, WP3 and WP4 are fed with the results of this 

evaluation process to deliver the final version of the enablers. Thus, the 3rd 

cycle ends with the evaluation of the final version of the demonstrators. This 

deliverable describes exactly the final state of the enablers developed in WP2, 

as well as the experiments conducted and proposed to technically validate 

them according to the validation plan and the requirements and metrics 

defined in D2.5 “Metrics & Experiments for V&V of the models in the 3rd cycle”. 

 



 

 

 

Figure 1: Project cycles, milestones and link between enablers (WP2, WP3 and WP4) and demonstrators (WP5 and 

WP6) 
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The development of all enablers follows the same process for WP2, WP3 and 

WP4 and, therefore, the deliverable D2.6, D3.7 and D4.6 have been structured 

with the same chapters to reflect this common (parallel) process. 

The current document is structured as follows (with a similar structure of 

deliverable D2.4, where the development of the enablers in 2nd cycle is 

described). After this introduction, the general approach of the project 

regarding WP2 is described in Chapter 2. Then, the status of the enablers is 

presented in Chapter 3 including the latest improvements and their final 

developments. Next, Chapter 4 describes the validation of enablers along with 

validation methodologies and the results. Finally, Chapter 5 concludes the 

document. 
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2 How the WP2 enablers contribute to the implementation  

The top-level objective of AutoMate is to develop, evaluate and demonstrate 

the “TeamMate Car” concept as a major enabler of highly automated vehicles. 

This concept consists of considering the driver and the automation as members 

of one team that understand and support each other in pursuing cooperatively 

the goal of driving safely, efficiently and comfortably from A to B. As a 

consequence, in order to show how the enablers contribute to the 

implementation of this concept, it is important to briefly explain why the 

cooperation is needed, and how the human and the automation can support 

each other to create a safe, efficient and comfortable driving experience.  

As described in previous documents (see, for example, D2.4, D3.5 and D4.4), 

the scenarios and use cases selected to demonstrate the relevance of each 

enabler are representative and consistent with the direction of cooperation 

implemented by that enabler, as well as the modality of support (i.e. either in 

action or perception). Since the cooperation is implemented through the 

enablers developed in the project, Table 1 shows the role and relevance of 

each enabler in the cooperation. 

The ultimate goal of D2.6 is to describe all results of T2.2-T2.5 at the end of 

the 3rd cycle. We remind here that: Task 2.2 “Design and implement 

AUTOMATE sensor and communication platform” aims at designing and 

implementing the AUTOMATE sensor and communication platform (Enabler 1); 

Task 2.3 “Build and integrate driver models” has the objective to develop the 

driver models (Enabler 2); finally, Task 2.4 “Build and integrate vehicle & 

situation models” aims at developing the situation models (Enabler 3) by 

combining data- and sensor-fusion (from T2.2) with probabilistic modelling 

techniques, to represent and estimate the spatial relations and physical states 
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of the vehicle and all objects in the environment.  
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Table 1: Role and relevance of the WP2 enablers for the cooperation 

WP ID Enabler 
Enabler 
Owner 

Aim of the enabler 

Direction of the support 

Automation to Human 
Human to 

Automation 

WP2 

Enabler 1: Sensor and communication platform 

E1.1 

Driver 
monitoring 
system with 
driver state 
model for 
distraction and 
drowsiness 

CAF 

Sensors and models 
for driver’s visual 
distraction and 
drowsiness detection 
and classification 

Enabler E1.1 is needed to 
implement a support in 
perception to complement the 
perception of the driver about 
the his/her state 

 

E1.2 
V2X 
communication 

BIT 

Allow the 
communication 
between the vehicle 
and everything. 

Enabler E1.2 is needed to 
implement a support in 
perception to complement the 
perception of the driver about 
the environment 

 

Enabler 2: Probabilistic Driver Modelling and Learning 

E2.1 
Driver intention 
recognition 

OFF 

Classify the current 
driver state, describe 
the interdependencies 
between the driver’s 
state, type, behaviour 
and environment and 
predict the driver 
intention 

Enabler E2.1 is needed to 
implement a support in 
perception to complement the 
perception of the driver about 
his/her state 
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Enabler 3: Probabilistic Vehicle and Situation Modelling 

E3.1 
Situation and 
vehicle model 

DLR 
OFF 

Estimate the dynamic 
vehicle and object 
state and position 

Enabler E3.1 is needed to 
implement a support in 
perception to complement the 
perception of the driver about 
the situation and the vehicle  

 

E3.2 
Driving task 
Model 

DLR 

Define the driver’s 
tasks to understand 
the expected 
behaviour  
(Paper Enabler) 

Enabler E3.2 is needed to 
implement a support in action 
along with E6.1 (Interaction 
Strategy) to provide the driver 
with an effective means to 
interact with the automation in 
case of need. 

Enabler E3.2 is 
needed to implement 
a support in action 
along with E6.1 
(Interaction 
Strategy) to provide 
the driver with an 
effective means to 
answer and give 
feedback to the 
automation.  
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3 Status of WP2 enablers in cycle 2 

This section describes the detailed results achieved during the 3rd cycle of the 

project. Modified assumptions and new approaches based on the knowledge 

acquired from the 1st and 2nd cycles are written along with the improvements 

and final state of the developments (and related results). Furthermore, the 

testing methodologies are presented, in order to validate the enablers.  

3.1 E1.1 – Driver monitoring system with driver state model for 

distraction and drowsiness 

This section describes the status of the enabler E1.1, that is the Driver 

Monitoring System (DMS), as provided by CAF partner. 

3.1.1 Scenario and uses case where E1.1 is relevant 

As shown in Table 1, Enabler E1.1 is needed to implement a support in 

perception from the automation to the human (A2H) to complement the 

perception of the driver about his/her state. 

One of the use cases of MARTHA scenario has been revised to highlight and 

clarify the role of E1.1 to implement this cooperation. 

Martha is driving in an extra-urban road in Manual Mode. She receives an 

incoming call: the car detects that she is distracted and this could lead to an 

unsafe behaviour. The TeamMate car offers a cooperation in action, suggesting 

a handover in order to shift to Automatic Mode. Martha accepts the suggestion 

and cedes the control. 
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The DMS will contribute to this scenario tested in the Vedecom demonstrator 

car by providing a Visual Distraction information through 2 output: 

 eyes off the road 

 ID of the instrument Martha is looking at 

The Martha scenario was tested in the Vedecom demonstration car in static 

conditions. The driver had to look at the smart phone located on the passenger 

seat. He will take it, place it on his left leg and read the message. 

The images below show first the DMS visual interface of the driver looking at 

the smart phone on the passenger seat, the second one shows the driver 

reading the message. We can see on the left part of the image that the correct 

areas are detected. 

 

 

Figure 2: DMS visualisation interface of a VEDECOM driver looking at the smart 

phone on passenger seat. 
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Figure 3: DMS visualisation interface of a VEDECOM driver looking at the smart 

phone on his legs. 

3.1.2 DMS Integration in VEDECOM Car 

Within the 2 first cycles the driver state system was validated in laboratory 

and in car condition considering an optimal position of the camera placed It is 

then necessary to perform validation tests of the generic scenarios and specific 

to the demonstration vehicle in the demonstration vehicle.  

The nominal position of the camera is behind the steering looking at the driver 

face through the steering wheel. This optimal camera position couldn’t be 

achieved in the Vedecom demonstration car because it would have been too 

intrusive by occluding some mandatory information displayed on vehicle 

screens. 

The camera was placed in between the two frontal displays about 15 cm to the 

right and above of about 12 centimetres compared to the nominal position.  

Consequently, it is expected some performances degradation when the driver 

turns at the opposite of the camera position, that is left or downward. 
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The left image of Figure 4 shows the position of the camera (blue rectangle) 

integrated in the Vedecom demonstration car. The right image of Figure 1 

shows the camera image and the tracking markers in green overlay. 

 

 
 

 

Figure 4: Camera integrated in the Vedecom demo car 

3.1.3 System Calibration 

To obtain all the information concerning gazes, instruments observed, etc. It 

is necessary to first go through a calibration step which will be carried out in 

3 steps: 

• Creation of the 3D world in a "World Target Coordinate System" 

• Extrinsic calibration of the ICP camera 

• Calibration of the "Driver World" in the "Cockpit World" 

3.1.3.1 Creation of the 3D World 

The goal of this step is to create the 3D world of the cockpit in the coordinate 

system of a target "world". 
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To do this a Kinect is placed between the two front seats so you can see all 

the instruments we want to list. A calibration chessboard is placed at the 

Central Display (if possible with no angle value yaw, pitch and roll) to allow 

the algorithms to obtain an origin. 

 

 

Figure 5: creation of the 3D world. 

Once the recording is done, we must list the different instruments to create 

the 3D world. 

The instrument of interest are tagged with yellow paper for providing  accurate 

3D data.  

3.1.3.2 Extrinsic Calibration of the ICP Camera 

To calibrate the ICP camera which is in our case located to the right of the 

steering wheel, we must place a small calibration chessboard at the location 

of the driver's head (this calibration chessboard must, like the previous one, 

have no angle yaw, pitch and roll). 

Using the record made by this camera, the algorithm allows you to perform 

the calibration. 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<27/12/2018> Named Distribution Only 

Proj. No: 690705 

Page 24 of 

123 

 

 

Figure 6: ICP calibration. 

3.1.3.3 Calibration of the « Driver World » in the « Cockpit World » 

After having obtained the various worlds which interests us, it is necessary to 

create the matrix of passage making it possible to pass from "Driver World" to 

"Cockpit World". 

To do this, we now use a µEye camera to make a record to obtain the 2 

previously placed targets, on both sides of the record. 

Our algorithm then allows us to obtain the transition matrix. 
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Figure 7: calibration of "Driver world" to "Cockpit world". 

Once done, we get a display like the one we can see in the next image. 

In the left upper quadrant, the cockpit world is visualized. The instruments are 

represented by white rectangles which are filled with a green color when the 

estimated driver eye gaze intersect it.  

 

 

Figure 8: ICP demo graphic user interface. 
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3.2 E1.2 – V2x communication 

The Enabler E1.2, on V2X communication, is described in the following 

sections. 

3.2.1 Scenario and uses case where E1.2 is relevant 

V2x is essential part of future ITS systems. It directly improves the security of 

transportation, and it can improve the traffic flow and transport efficiency. 

In AutoMate project, there are two scenarios in which V2X has a crucial role, 

even if in these scenarios the utilization of V2X differs. 

All in all, the scenarios and use cases did not change with respect to cycle 2, 

except that V2V will be not demonstrated in EVA scenario  

Thus, as reminder, in the MARTHA scenario V2I acts as an additional sensor, 

meaning that the TeamMate car is able to receive information about the 

environment (i.e. road works ahead), which would not be available in time for 

a safe cooperation. This is based on the simple information sharing concept of 

V2x.  

The use case of MARTHA scenario has been revised to highlight and clarify the 

role of E1.2 to implement this cooperation. Martha is driving in an extra-urban 

road in Manual Mode. She receives an incoming call: the car detects that she 

is distracted, and this could lead to an unsafe behaviour. The TeamMate car 

offers a cooperation in action, suggesting a handover in order to shift to 

Automatic Mode. Martha accepts the suggestion and cedes the control. 

3.2.2 Implementation 

The 3rd cycle was about preparing the V2X equipment, i.e. Cohda MK5 units 

for field tests, conformance tests and deployment. That required to get familiar 
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with the device inner operations and the structure of the related Linux based 

applications and scripts. Using this knowledge we were able to customize its 

behaviour and set up them according to the needs of the different scenarios. 

To achieve the high reliability that is required for an embedded device and to 

have automated, repeatable functions, different configuration files and scripts 

were developed during the 3rd cycle. A short overview of these are presented 

in this section. 

As mentioned in Deliverable 2.42, in the previous cycle the specific 

standardized V2X messages were identified that are relevant for the AutoMate 

project scenarios. Furthermore, the compliance of the generated messages by 

the Cohda MK5 units were successfully tested. In this cycle, one of these 

specific messages, the Decentralized Environmental Message (DENM) was 

filled up with actual information instead of dummy data using configuration 

files. Different configuration files were prepared for each location of field tests 

and for the different test cases as well as for conformance testing. 

The following scripts were developed for the V2X equipment to maintain high 

reliability, while its functions are customised: 

 rsu_denm-rww.sh – automatically starts the V2X device in RSU mode 

after boot up to broadcast Road Works Warning (RWW) message with 

given configuration; the script is able to stop and/or restart this 

procedure according to the operator needs without restarting the device 

 obu_cam.sh – same behaviour for Cooperative Awareness 

Message (CAM) 

                                    

2 AutoMate Deliverable 2.4: “Sensor Platform and Models including V&V results from 2nd cycle” 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<27/12/2018> Named Distribution Only 

Proj. No: 690705 

Page 28 of 

123 

 

By some other settings and these scripts the field tests and deployment of RSU 

are basically solved, however, the devices are still black boxes. It is hard to 

access them physically (UTP/Ethernet cable is required) as well as complicated 

to enter in the operation system (configuring IP address and connection via 

SSH is also necessary). That is natural for an embedded system. To overcome 

these issues BIT extended the V2X device with an additional mini computer 

(with a Raspberry PI 3 Model B in this case) that has Ethernet and Wi-Fi 

interfaces as well. With proper applications and configuration the mini PC 

behaves as a wireless access point (AP), and provides limited access to the 

V2X device through a web based interface. This functionality simplifies the 

supervision of the Cohda MK5 unit, furthermore, remote access is possible 

(from a limited range of course, due to wireless nature) that allows to check 

the log files and adjust the configuration if necessary. For more complicated 

tasks an operator is still able to connect via SSH, but configuring the local 

network connections is unnecessary, since the AP has DHCP server too. This 

is also a nice advantage that makes the V2X device easier to use. The 

architecture of this extended system is depicted in Figure 9, while the web 

based interface is visible in Figure 10. 
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Figure 9: The architecture of extended system of Cohda MK5 unit using 

Raspberry PI 3B 
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Figure 10: The web user interface of RaspAP3 

Finally, BIT developed a web based visualization framework for the test results. 

The design of this framework started in the 2nd cycle, but the implementation 

was not finished, therefore it was not reported in D2.4. The visualization 

framework that is called Virtual HMI or VHMI depict some basic attributes of a 

given car (like speed, direction of movement etc.) using graphical elements. 

The parameters are originates from the GNSS based positioning system of the 

V2X device. Furthermore, a map is shown on the interface that illustrates 

nearby cars equipped with V2X unit and warns of road works in the proximity. 

                                    

3 https://github.com/billz/raspap-webgui 
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The significance of the web based interface is that these features are available 

from web browser, i.e. from a smart phone or tab as well without any specific 

application. The framework is able to work in real time by instantly visualizing 

the data coming from a vehicle as well as it is able to read log files stored in a 

specific format, and replay the recorded scenario. To transmit and log the 

GNSS data in specific format coming from the Cohda MK5 unit, the gateway 

application is used that was developed in the previous cycle and reported 

in D2.4. The VHMI was applied during the evaluation of the field tests and to 

validate the V2X equipment. Figure 11 shows graphical interface of the 

visualization framework. 

 

Figure 11: The web based GUI of visualization framework. Elements: map (top left), 

instruments (bottom left), 3D visualization of proximity (right). 
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3.3 E2.1 – Driver Intention Recognition 

Driver intention recognition most commonly addresses the problem of 

anticipating driving manoeuvres a driver is likely to perform in the next few 

seconds. As early knowledge about such manoeuvre intentions may serve as 

a potential enabler to generate adaptive warnings and early interventions prior 

to the initiation of potential dangerous manoeuvres, driver intention 

recognition is of ever increasing importance for the development of advanced 

driver assistance systems and has become a popular research topic in recent 

years. Approaches reported in the literature (some comparative reviews are 

provided e.g., by Doshi and Trivedi [4] and Lefèvre et al. [5]) mainly differ in 

respect to the selected scenarios and addressed manoeuvres, modelling 

techniques used, and the sensor input considered.  

In AutoMate, the development of models for driver intention recognition 

primarily focussed on the recognition of overtaking intentions on rural roads, 

akin to the Peter scenario. The purpose of intention recognition in the Peter 

scenario is to constantly provide the TeamMate vehicle with an online 

recognition of the current intentions of the driver (to be used for the 

cooperation). In addition, data are collected, to be used by E4.2 (Learning of 

intention from the driver) to learn when to trigger the overtaking in Automated 

                                    

4 Doshi, A. and M. M. Trivedi (2011), “Tactical Driver Behavior Prediction and Intent Inference: 

A Review”, in Proceedings of the 14th International IEEE Conference on Intelligent 

Transportation Systems, pp. 1892-1897. 

5 Lefèvre, S., D. Vasquez, and Ch. Laugier (2014), “A Survey on Motion Prediction and Risk 

Assessment for Intelligent Vehicles”, in Robomech Journal, 1, 1, pp. 1-14. 
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Mode and to perform it in a human-like style. Within the TeamMate vehicle, 

the information provided can be used as follows: 

 If the driver is in control of the TeamMate vehicle (manual driving), the 

information provided by the model can be used to assess the safety of 

the intended driving manoeuvre.  

 If the automation is in control of the TeamMate vehicle (autonomous 

driving), the information provided by the model can serve as a 

mechanism to learn and trigger the most appropriate manoeuvres to the 

automation. 

In addition to rural road scenarios, we extended the focus in the third cycle of 

AutoMate to cover a variant scenario (roundabouts) compared to overtaking 

scenario. The extension of the model was focused on Eva, dealing with 

intention recognition in entering to roundabouts. 

For the development of the models for driver intention recognition in 

AutoMate, we started with a pre-existing framework, consisting of libraries and 

algorithms for the creation and utilization of (Dynamic) Bayesian Networks, 

originally developed during the former EU project HoliDes. Within AutoMate, 

this framework was significantly updated and extended, e.g., to allow for the 

learning and utilization of more complex model structures and parametric 

distributions, enabling the update of model parameters during runtime (as 

required by Enabler 4.2), and enabling the use in rural road and roundabout 

scenarios. To face the “cold start” problem during the first cycle of AutoMate, 

i.e., model development prior to the conduction of any data collection 

experiments, we made use of experimental data obtained during the former 

EU project HoliDes. 
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3.3.1 Scenario and uses case where E2.1 is relevant 

The relevant use cases for the Peter scenario have already been reported in 

deliverable D2.4 “Sensor Platform and Models including V&V results from 2nd 

cycle” and remain valid. As an update, in the third cycle of AutoMate, the 

model was extended to cover a variant scenario (roundabouts) compared to 

overtaking scenario. The extension of the model was focused on Eva, dealing 

with intention recognition in entering to roundabouts. 

In the Eva scenario, the TeamMate vehicle is approaching to a roundabout in 

automated mode. Due to a high traffic flow in the roundabout, the TeamMate 

vehicle hesitates to enter the roundabout and takes a long time to evaluate 

the situation and to enter the roundabout, resulting in frustration and reducing 

the acceptance of the automation. 

To increase the efficiency in entering the roundabout, the TeamMate vehicle 

asks Eva to enter to the roundabout in the manual mode, and learns about the 

proper situation to enter the roundabout from Eva’s manual driving. Later the 

TeamMate vehicle triggers entering to the roundabouts maneuver according 

to Eva’s preferences. 

In this use case, E2.1 provides a strategy to trigger the decisions of the 

automation, by introducing the right moment regarding to the traffic situation 

in the roundabout to enter to the roundabouts. Here, the intention recognition 

model learns the proper traffic situation to enter the roundabout from human 

perspective and triggers entrance maneuver regarding to the preference of a 

human driver.  

Now, we consider two applicative areas for the DIR: the rural roads and the 

roundabouts. 
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3.3.2 Driver Intention Recognition in rural road scenarios  

Next paragraphs describe the concept, the improvements and the 

implementation activities for the rural road scenario. 

3.3.2.1 Concept 

The general concept of the probabilistic model for driver intention recognition 

on rural roads (for the remainder of this section simply referred to as model) 

has been introduced in deliverable D2.4 “Sensor Platform and Models including 

V&V results from 2nd cycle”. Based on the validation results obtained at the 

end of the second cycle, we made some adjustments to this concept for the 

third cycle. As such, we will shortly recap the concept of the driver intention 

recognition on rural roads. 

The model is conceptualized a Dynamic Bayesian Network that represents the 

relations between the driver’s intentions, driving manoeuvres resp. behaviors, 

and the situational context, as observable by the TeamMate vehicle’s senor 

and communication platform.  

For rural road scenarios with one lane in each direction, and assuming right-

hand traffic, we considered three primary driving manoeuvres resp. 

behaviours: performing lane changes from the right to the left lane (LCL), from 

the left to the right lane (LCR), and general lane-keeping behaviour (LK), in 

the following represented by a discrete variable �, ���(�) = {����, ����, ���}. 

Corresponding to these behaviours, we considered three potential intentions: 

the intention to change to the left lane (i.e., to initiate an overtaking), to return 

to the right lane (in order to complete an overtaking manoeuvre), and the 

absence of a lane change intention. To provide a more precise definition of 

intentions within the context of driver intention recognition in AutoMate, we 
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specify that the presence of lane change intention implies that the driver is 

currently performing such lane change or will initiate such lane within the 

duration of one second.  

Although arguably less intuitive, for modelling purposes, it is more convenient 

to replace lane change intentions with target lane intentions, i.e., whether the 

driver intends to drive on the left or on the right lane, represented by a binary 

variable �, ���(�) = {��, ��}. Correspondingly, let �, ���(�) = {��, ��} denote a binary 

variable that represents whether the TeamMate vehicle is located on the left 

or right lane. Following the definition of lane change intentions, we define that 

a discrepancy between a target lane intention and the lane in which the 

TeamMate vehicle in located, implies that the driver will initiate a lane change 

to the target lane within the next second. We will discuss the drawbacks of 

this definition in the next section. 

Lastly, let � denote a set of discrete and continuous variables representing the 

observable causes for the formation of intentions and let � denote a set of 

discrete and continuous variables representing the observable effects of the 

intentions in terms of the resulting driving behaviour. 

During the second cycle, the model was then based on the assumption that 

the temporal evolution of intentions and behaviours can be expressed as two 

hidden first-order Markov processes. More specifically we assumed that for 

any number of time steps � ≥ 1, the conditional joint distribution 

�(��:�, ��:�, ��:�|��:�, ��:�) can be factorized, according to the (conceptual) graph 

structure shown in Figure 12, as: 

�(��:�, ��:�, ��:�|��:�, ��:�) = �(��:�|��:�, ��:�)�(��:�, ��:�|��:�, ��:�)

= �(��|��, ��)�(��|��, ��)�(��|��, ��) � �(��|����, ��, ��)�(��|����, ��, ��)�(��|��, ��)

�

���

. 
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Figure 12: Conceptional graph structures of the initial BN (left) and the 2TBN 

(right) of the model for driver intention recognition on rural road during the 

second cycle. All shaded nodes are assumed to be observed during inference. 

Darker shaded nodes do not have a probability resp. density distribution 

associated within the model. 

As such, the model was defined in terms of two components, a component for 

intention recognition, realized akin to a Maximum-entropy Markov Model, 

where for any number of time steps � the (conditional) joint distribution 

�(��:�|��:�, ��:�) is defined as 

�(��:�|��:�, ��:�) = �(��|��, ��) � �(��|����, ��, ��)

�

���

, 

and a component for behaviour recognition, realized akin to an (input-

dependent) Hidden Markov Model with factorized observation model, where 

for any number of time steps � the (conditional) joint probability distribution 

�(��:�, ��:�|��:�, ��:�) is defined as 

�(��:�, ��:�|��:�, ��:�) = �(��|��, ��)�(��|��, ��) � �(��|����, ��, ��)�(��|��, ��)

�

���

. 

These components can be interpreted as follows: we assume that intentions 

evolve based on the situational context encountered. Intentions then manifest 
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themselves by the execution of driving manoeuvres whose effects can be 

observed. 

3.3.2.2 Improvements 

The proposed definition has the important drawback in that it does not allow 

to distinguish between the “clear” absence of a lane change intention, e.g., 

due to the absence of a lead vehicle, and situations in which the driver is 

closely following a lead vehicle, occasionally checking whether opposing traffic 

allows for a safe overtaking, a situation quite commonly encountered within 

the experimental data used during the second cycle. 

To allow for such a distinction, for the third cycle, we extend the notion of 

intention by the concepts of desire and opportunity to perform a lane change. 

To provide a clear definition, we specify that: 

1. The presence of a desire to change the lane implies that the driver 

desires to change the lane, but may lack the opportunity to do so, such 

that the presence of a desire does not imply the presence of an intention, 

as previously defined, and does not imply the initiation of a lane change. 

2. The presence of an opportunity implies that the driver has decided that 

a given situation (in his subjective opinion) provides the opportunity to 

perform a lane change within the next second. 

Keeping the original definition of intentions, we can then deterministically 

derive the presence of a lane change intention based on the presence of a 

desire and an opportunity. As with intentions, for modelling purposes, it is 

convenient to define desires and opportunities in terms of target lanes. As 

such, let the desire be represented by the binary variable �, ���(�) = {��, ��} 
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and let the opportunity be represented by the binary variable �, ���(�) =

{��, ��}. 

Incorporating these considerations to update the conceptual model structure 

for driver intention recognition on rural roads is achieved as follows. The 

component for behaviour recognition remains unchanged, while the 

component for intention recognition is replaced by a conceptual mechanisms 

of desires and opportunities, where for any number of time steps � the 

(conditional) joint distribution �(��:�, ��:�, ��:�|��:�, ��:�) is defined as: 

�(��:�, ��:�, ��:�|��:�, ��:�) 

= 

�(��|��, ��)�(��|��, ��, ��)�(��|��, ��, ��) 

� �(��|����, ��, ��)�(��|����, ��, ��, ��)�(��|��, ��, ��)

�

���

. 

 

Given these conceptual considerations, we assume that for any number of time 

steps � ≥ 1, the conditional joint distribution �(��:�, ��:�, ��:�, ��:�, ��:�|��:�, ��:�) 

can be factorized, according to the (conceptual) graph structure shown in 

Figure 13, as: 

�(��:�, ��:�, ��:�, ��:�, ��:�|��:�, ��:�)  

= �(��:�|��:�, ��:�)�(��:�|��:�, ��:�, ��:�)�(��:�|��:�, ��:�, ��:�)�(��:�, ��:�|��:�, ��:�) 

= 

�(��|��, ��)�(��|��, ��, ��)�(��|��, ��, ��)�(��|��, ��)�(��|��, ��) 

� �(��|����, ��, ��)�(��|����, ��, ��, ��)�(��|��, ��, ��)�(��|����, ��, ��)�(��|��, ��)

�

���
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Figure 13: Conceptional graph structures of the initial BN (left) and the 2TBN 

(right) of the model for driver intention recognition on rural road during the third 

cycle.  

When fully specified, the model can be utilized as follows: Let � = {�, �, �, �} 

denote the set over variables representing the current target lane intentions 

�, desires �, opportunities �, and manoeuvres �, during runtime, the model is 

used to at each time step � infer and maintain a joint belief state 

�(��|��:�, ��:�, ��:�) given all available input obtained thus far, via recursive 

Bayesian filtering adapted to the structure of the model: 

�(��|��:�, ��:�, ��:�)

∝ � �(��|��, ��) � � � �(��|����, ��, ��, ��)�(����|��:���, ��:���, ��:���)

�∈��∈��∈��∈�

, 

where 

�(��|����, ��, ��, ��) = �(��|��, ��, ��)�(��|����, ��, ��)�(��|����, ��, ��, ��)�(��|����, ��, ��). 

From this joint belief state, separate belief states over intentions, 

�(��|��:�, ��:�, ��:�), desires, �(��|��:�, ��:�, ��:�), opportunities, �(��|��:�, ��:�, ��:�), and 

behaviours, �(��|��:�, ��:�, ��:�), can easily be derived via marginalization with the 
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distributions or derived measures, e.g., the most probable assignments, 

provided to other components of the TeamMate vehicle. If in autonomous 

mode, we can simply limit the model to the sub-component for intention 

recognition to derive �(��|��:�, ��:�), �(��|��:�, ��:�), and �(��|��:�, ��:�). 

As provided, the model should be understood as conceptional, in that the 

parameters and finer structure, e.g., which variables constitute causes � and 

effects �, must be provided based on prior expert knowledge and/or derived 

from multivariate time-series of human behaviour data via the use of machine-

learning methods. 

3.3.2.3 Implementation 

For the development and validation of the probabilistic models for driver 

intention recognition on rural roads, OFF, ULM, and HMT conducted a dedicated 

simulator study in the OFF driving simulator, as described in detail in 

deliverable D2.5 “Metrics and Experiments for V&V of the driver, vehicle and 

situation models in the 3rd cycle”. The experimental data obtained was split 

into a training set ������, including approx. 67.5% of the experimental data 

(2138134 samples or approx. 594 minutes), and a test set �����, including the 

remaining experimental data (1029216 samples or approx. 286 minutes). 

Within the third cycle, the training set has been used to learn the graph 

structures and parameters of two models �� and ��, which were then 

subsequently validated on the test set ����� (as described in section 4.3.1). 

For potential causes and effects for intention recognition on rural roads, we 

focused on a subset of the totally available input obtained in the simulator 

experiment, for which we considered a set of 30 observable variables, as 

described in the next table.  
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Table 2: Overview of the observable variables considered as causes � and effects � 

for intention recognition on rural roads during the third cycle. 

Variable Type Description 

�� Binary Represents, whether there exists a vehicle � in the 

traffic situation. � ∈ {���, ���, ���, ���, ���}. 

�� Binary Represents the type (PKW or LKW) of a vehicle � on 

the right lane. � ∈ {���, ���}. 

�� Continuous Represents the distance between the TeamMate 

vehicle and a vehicle � along the course of the road. 

� ∈ {���, ���, ���, ���, ���}. 

�� Continuous Represents the difference between the longitudinal 

velocity of a vehicle � and the TeamMate vehicle, 

measured from the vehicle behind to the vehicle in 

front (in respect to the travelling direction of the 

TeamMate vehicle). � ∈ {���, ���, ���, ���, ���}. 

�� Continuous Represents the time headway between two vehicles, 

measured from the vehicle behind to the vehicle in 

front (in respect to the travelling direction of the 

TeamMate vehicle). � ∈ {���, ���, ���, ���, ���} 

�� Continuous Represents the inverse time to collision between to 

vehicles, measured from the vehicle behind to the 

vehicle in front (in respect to the travelling direction 

of the TeamMate vehicle). � ∈ { ���, ���} 

� Continuous Represents a hypothetical viewing distance (up to a 

maximum of 700m) for the TeamMate vehicle, when 

located on the right lane. 
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� Binary Represents whether the TeamMate vehicle has a 

hypothetical free view, i.e. a viewing distance over 

700m, when located on the right lane. 

� Continuous Represents the heading angle, resp. yaw angle of the 

TeamMate vehicle in respect to the course of the 

road. 

� Continuous Represents the lateral position of the TeamMate 

vehicle within the road, measured as the deviation 

from the centreline. 

���� Continuous Represents the yaw rate of the TeamMate vehicle. 

���� Continuous Represents the acceleration of the TeamMate vehicle. 

 

As apparent from the following figure and owed to the simulator scenario being 

limited to a single lead vehicle. We considered up to five vehicles in the vicinity 

of the TeamMate vehicle. The vehicles are assigned to fixed “roles” based on 

their relative positions to the TeamMate vehicles and each otherErrore. 

L'origine riferimento non è stata trovata.. To improve the robustness to 

noise, we excluded the BNR vehicle for cases where the TeamMate vehicle was 

located on the right lane, and the BNL and ASL vehicles for cases where the 

TeamMate vehicle was located on the left lane. 

 

Figure 14: Assignment of roles to vehicles (dark) in the vicinity of the TeamMate 

vehicle (light)  
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Based on the results of the second cycle showing a preference for embedded 

Bayesian classifiers, we modelled the CPDs �(��|����, ��, ��), resp. �(��|��, ��), 

and �(��|����, ��, ��), resp. �(��|��, ��), in terms of embedded Bayesian 

classifiers, such that 

�(��|����, ��, ��) =
1

�(����, ��, ��)
�(��|����, ��)�(��|��, ��) 

and 

�(��|����, ��, ��, ��) =
1

�(����, ��, ��, ��)
�(��|����, ��, ��)�(��|��, ��, ��) 

with �(����, ��, ��) = ∑ �(��|����, ��)�(��|��, ��)�∈�  resp. �(����, ��, ��, ��) =

∑ �(��|����, ��, ��)�(��|��, ��, ��)�∈�  representing normalization constants and 

�(��|��, ��) resp. �(��|��, ��, ��) factorizing according to a Bayesian network 

structure. Lastly, the distribution �(��|��, ��) was factorized based on a 

Bayesian network. Based on the intuition that information required for 

intention and behaviour recognition is strongly influenced by specific context, 

like e.g., the lane ��, the TeamMate vehicle is located in, we allowed for 

context-specific independencies by considering distinct factorizations of 

�(��|��, ��), �(��|��, ��, ��), and �(��|��, ��), to be used in different context, e.g., 

when travelling on the left or on the right lane of the road. 

We compared two different conceptual realizations for the factorizations of 

�(��|��, ��), �(��|��, ��, ��), and �(��|��, ��) resulting in two different models, in 

the following denoted as �� and ��. For ��, �(��|��, ��), �(��|��, ��, ��), and 

�(��|��, ��) were factorized in a way that continuous variables were 

conditionally independent given any discrete parents, akin to an (augmented) 

naïve Bayesian classifier. For ��, �(��|��, ��), �(��|��, ��, ��), and �(��|��, ��) were 

factorized in a way that allowed the modelling of interdependencies between 

continuous variables, where we limited the number of connected continuous 
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variables to a maximum of two. For both �� and ��, following the results during 

the second cycle, distributions over continuous variables were approximated 

by mixture of Gaussian distributions with the number of mixture component 

derived automatically during parameter estimation. 

For deriving the exact graph structures and corresponding parameters of the 

different realizations for �� and ��, we relied on machine-learning methods 

based on discriminative structure learning techniques using the training set 

������. Depending on the resulting graph structure, observable variables that 

are not conditioned by any hidden variable will cancel out during the inference 

and were thus excluded from the corresponding graph structures. 

For each �� and ��, the following sub-models had to be learned: 

 �(��|����, ��
� , ��): For recognizing the desire to change to the left lane 

when located on the right lane, we a priori limited the set of considered 

observable variables to the subset {����, ����, ����, ����, ����, �, �} such as 

to force the recognition of the desires to be based on a potential lead 

vehicle. Figure 15 shows the learned graph structure, omitting the 

conditioning ��
� , for the embedded classifier realizing �(��|����, ��

� , ��) for 

��, Figure 18 shows the learned graph structure for ��. 

 �(��|����, ��
� , ��): Under the assumption that, in rural road scenarios, a 

driver located on the left lane will return to the right lane as soon as the 

opportunity arises, we a priori defined �(��|����, ��
� , ��) = �(��|��

� ), with 

�(��
� |��

� ) ≅ 1.0 and �(��
� |��

� ) ≅ 0.0. 

 �(��|����, ��
� , ��

� , ��): For recognizing the subjective opportunity to change 

to the left lane when located on the right lane, and having the desire to 

change to the left lane, we a priori limited the set of considered 

observable variables to the subset  
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{����, ����, ����, ����, ����} ∪ {����, ����, ����, ����, ����}

∪ {����, ����, ����, ����, ����} ∪ {����, ����, ����, ����} ∪ {�, �}. 

Errore. L'origine riferimento non è stata trovata. (right) shows the 

learned graph structure, omitting the conditioning ��
�  and ��

� , for the 

embedded classifier realizing �(��|����, ��
� , ��

� , ��) for ��, Figure 19 (right) 

shows the learned graph structure for ��. 

 �(��|����, ��
� , ��

� , ��): For recognizing the subjective opportunity to change 

to the right lane when located on the left lane, and having the desire to 

change to the right lane, we a priori limited the set of considered 

observable variables to the subset  

{����, ����, ����, ����, ����} ∪ {����, ����, ����, ����, ����}

∪ {����, ����, ����, ����, ����} ∪ {�, �}. 

Errore. L'origine riferimento non è stata trovata. (left) shows the learned 

graph structure, omitting the conditioning ��
�  and ��

� , for the embedded 

classifier realizing �(��|����, ��
� , ��

� , ��) for ��, Figure 19 (left) shows the 

learned graph structure for ��. 

 �(��|����, ��
� , ��

� , ��): For the situation of recognizing the subjective 

opportunity to change to the left lane when located on the right lane, 

and having the desire to stay to the right lane, we had no annotations 

and therefore a priori defined �(��|����, ��
� , ��

� , ��) = �(��|��
� ), with 

�(��
� |��

� ) ≅ 1.0 and �(��
�|��

� ) ≅ 0.0. 

 �(��|����, ��
� , ��

� , ��): For the situation of recognizing the subjective 

opportunity to change to the right lane when located on the left lane, 

and having the desire to stay to the left lane, based on our assumption 

that a driver will always want to return to the right lane, we had no data 
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at all and therefore a priori defined �(��|����, ��
� , ��

� , ��) = �(��|��
� ), with 

�(��
�|��

� ) = �(��
� |��

� ) = 0.5. 

 �(��|��, ��
� ): For factorizing �(��|��, ��

� ), we considered � =

{����, ����, �, �, �, �}. Figure 17 (right) shows the learned graph structure, 

omitting the conditioning ��
�  for ��, Figure 20 (right) shows the learned 

graph structure for ��. 

 �(��|��, ��
� ): Given that � and � were only defined when the TeamMate 

vehicle was located on the right lane, we a priori defined �(��|��, ��
� ) =

�(��, ��|��
� )�(����, ����, �, �|��, ��

� ), with �(��, ��|��
� ) cancelling during 

inference, and attempted to learn the remaining graph structure for 

�(����, ����, �, �|��, ��
� ). Figure 17 (left) shows the learned graph structure, 

omitting the conditioning ��
�  for ��, Figure 20 (left) shows the learned 

graph structure for ��. 

Together, they complete the conceptual graph structure of the probabilistic 

models �� and �� for intention recognition on rural roads during the third 

cycle.  

 

Figure 15: Learned graph structure of the embedded Bayesian classifiers realizing 

�(��|����, ��
� , ��) in ��. 
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Figure 16: Learned graph structures of the embedded Bayesian classifiers realizing 

�(��|����, ��
� , ��

� , ��) (left) and �(��|����, ��
� , ��

� , ��) (right) in ��. 

 

 

Figure 17: Learned graph structures of �(��|��, ��
�) (left) and �(��|��, ��

� ) (right) in ��. 
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Figure 18: Learned graph structure of the embedded Bayesian classifiers realizing 

�(��|����, ��
� , ��) in �� 

 

 

Figure 19: Learned graph structures of the embedded Bayesian classifiers realizing 

�(��|����, ��
�, ��

� , ��) (left) and �(��|����, ��
� , ��

�, ��) (right) in ��. 
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Figure 20: Learned graph structures of �(��|��, ��
�) (left) and �(��|��, ��

� ) (right) in ��. 

For the integrating of the resulting models for driver intention recognition on 

rural roads into the TeamMate system architecture and potentially 

demonstrators, a framework for performing inferences in (Dynamic) Bayesian 

Networks following the conceptual graph structure (Figure 13) has been 

integrated together with the functionality for the prediction of the temporal 

and spatial evolution of the traffic scene, online risk assessment in respect to 

other traffic participants, and the online learning into a single C++ Dynamically 

Linked Library. For integration into the ULM simulator, this library is wrapped 

in a DPU, which is a format for exchangeable modules of the SILAB simulation 

software used by ULM. For the integration into the VED demonstrator the 

library is wrapped into a RTmaps package, which allows a seamless integration 

into the RTMaps system environment used by VED.  

3.3.2.4 Environmental context information 

The required input in terms of environmental context information of the overall 

module integrating the functionality of traffic prediction, online risk 
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assessment, driver intention recognition, and online learning conforms to the 

TeamMate system architecture and consists of  

 the static environment model (including a digital road map) 

 the dynamic environment model (including the state of the TeamMate 

vehicle and the state of all dynamic objects detected by the TeamMate 

vehicle) 

 and an optional planned trajectory,  

as defined in deliverable D5.1 “TeamMate System Architecture including open 

API for 2nd cycle”. On an internal level, the probabilistic model for driver 

intention recognition on rural roads operates on the following input (for a full 

definition, we refer to deliverable D5.1) from which all subsequent measures 

are derived (As apparent from this list, the traffic prediction does not process 

any personal or private data): 

 A digital road map that allows a reasonable reconstruction of the road 

structure along the prediction horizon for each considered object that 

shall be predicted. In the case of simulator environments, such a map 

can be constructed beforehand based on the simulation scenario. In the 

case of the VED real vehicle demonstrator, a map of the VED test course 

has been provided by VED. 

 The state of the TeamMate vehicle, consisting (limited to the required 

input for the traffic prediction) of the following information: 

o Timestamp: Timestamp of the measurement. 

o PositionX: x-position of the centre of the bounding box. 

o PositionY: y-position of the centre of the bounding box. 
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o Heading: Heading in respect to the x-axis. 

o VelocityX: Velocity in longitudinal direction. 

o AccelerationX: Acceleration in longitudinal direction. 

o YawRate: Radial velocity. 

In the case of simulator environments, this input can be provided directly 

by the simulation software, in the case of the VED real vehicle 

demonstrator, this is provided by the VED real vehicle internal sensors, 

e.g., a high precision GPS. 

 The state of all dynamic objects detected by the TeamMate vehicle, 

where each state consists (limited to the required input for the traffic 

prediction) of the following information: 

o Timestamp: Timestamp of the measurement. 

o PositionX: x-position of the centre of the bounding box. 

o PositionY: y-position of the centre of the bounding box. 

o Heading: Heading in respect to the x-axis. 

o VelocityX: Velocity in longitudinal direction. 

o AccelerationX: Acceleration in longitudinal direction. 

o YawRate: Radial velocity. 

o Length: Length of the bounding box in longitudinal direction. 

o Width: Length of the bounding box in lateral direction. 

In the case of simulator environments, this input can be provided directly by 

the simulation software. In the case of potential real vehicle demonstrators, 
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the required input can, in theory, be provided by external sensors, like e.g., 

LIDARs, RADARs, or camera. It is however important to note that the current 

level of sensor technology is not yet mature enough for the application of the 

models for driver intention recognition on rural roads. The probabilistic driver 

model for intention recognition on rural roads was developed based on 

experimental data obtained in simulator experiments, with the ability to collect 

ground truth data in (basically) unlimited range, obviously vastly 

outperforming the capabilities and range of any real-world sensor available 

today. More specifically, the simulation environment, provided information 

about oncoming traffic up to a distance of 850m, unhindered by any 

occultation by other traffic, like e.g., a lead vehicle. Obviously, such 

requirements do not hold in current real-world scenarios, making the model 

currently inapplicable outside of simulation environments. 

Nonetheless, we believe that there is a strong merit to the investigation of 

driver intention recognition on rural roads, even if, presently, limited to 

simulation environments. First, the resulting model structure and parameters 

help in knowledge discovery, revealing which information is potentially 

valuable for intention recognition, enabling us to assess e.g., the necessary 

range a sensor must provide to make intention recognition on rural roads 

feasible. As a simple demonstration, Figure 21 exemplarily shows the isolated 

influence of the distance to the nearest opposing traffic participant on the fast 

lane, ����
� , on the probability that the driver recognizes an opportunity to 

change to the left lane, �(��
�|��

� , ��
� , ����

� , ����
� = true), while the TeamMate vehicle 

is located on the right lane and desires to change to left lane. The isolated 

influence can be obtained by assuming �(��) to be uniform, enabling us to and 

calculate  
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�(��
�|��

� , ��
� , ����

� , ����
� = true) =

�(����
� |��

�, ��
� , ��

� , ����
� = true)

∑ �(����
� |��, ��

� , ��
� , ����

� = true)�∈�

. 

As apparent, the probability for an opportunity is high when the opposing 

vehicle is near ����
� < 100�, enabling the driver to overtake after the opposing 

traffic has passed, but drops to a rather low probability within the region of 

approx. 125� < ����
� < 400�, in which a collision would be potentially 

unavoidable if attempting a lane change. Beyond the distance of approx. 

����
� > 520�, the probability for an opportunity exceeds the probability for no 

opportunity and steadily rises with increasing distance. 

 

Figure 21: Exemplary visualization of �(��
�|��

� , ��
� , ����

� , ����
� = true) =

������
� |��

�,��
� ,��

� ,����
� �true�

∑ ������
� |��,��

� ,��
� ,����

� �true��∈�
 

(i.e., assuming �(��) to be uniform). The dotted line represents �(��
�|��

� , ��
� , ����

� , ����
� =

true) > �(��
� |��

� , ��
� , ����

� , ����
� = true), the dashed line represents ����

� = ����. 

From this simple demonstration, we can assume that a sensor range of approx. 

520m would be adequate for driver intention recognition of rural road 

scenarios. Given the ongoing development of external sensors and other 

means to obtain necessary information, like e.g., V2X communication, we are 

confident that such information may become available in some foreseeable 

future. Just recently, a sensor supplier announced the first industry 
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demonstration6 of an advanced radar that is able to detect vehicles and their 

velocities at 300m. 

Furthermore, the underlying principles of the proposed model for driver 

intention recognition on rural roads can easily be transferrable to other 

scenarios, as demonstrated by the derived model for intention recognition in 

roundabout scenarios (c.f. section 3.3.2), that require less formidable sensor 

abilities. For the remainder of AutoMate, we will use experimental data 

obtained in the former European project HoliDes during real world driving 

studies on Italien highways by project partner CRF to prepare a model for 

driver intention recognition for the VED real vehicle demonstrator. 

3.3.3 Driver Intention Recognition in roundabout scenarios  

Next paragraphs describe the concept, the improvements and the 

implementation activities for the roundabout scenario. 

3.3.3.1 Concept 

The general concept of driver intention recognition is discussed in detail in 

deliverable D2.4 “Sensor Platform and Models including V&V results from 2nd 

cycle”. Briefly, we refer to driver intention recognition as the problem of 

anticipating the maneuver, a driver is most likely to take over in the next few 

seconds. Such anticipation could be obtained by learning from the driver 

intentions in similar contextual situation. 

                                    

6 “https://www.businesswire.com/news/home/20181009005331/en/”, last 

visited 19.12.2018. 
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The intention recognition in entering to the roundabouts mainly deals with 

identifying the proper moments, in which the driver, most likely, would intend 

to enter to roundabouts. The proper moments could also be understood as the 

proper traffic situations from the driver’s point of view to safely enter to 

roundabouts. Therefore, intention recognition model detects the traffic-based 

opportunities in which the driver desires to enter to the roundabouts. 

3.3.3.2 Implementation 

In the third cycle of AutoMate, a Dynamic Bayesian Network is used to model 

the probabilistic driver intention recognition in entering roundabouts. The 

purpose of the model is to identify the proper traffic situations in which the 

driver intends to enter to the roundabouts. Therefore, the model learns about 

the proper moment to trigger a human-like entrance maneuver to the 

roundabouts in Automated Mode. Such model can be used to assess the safety 

of the entrance maneuver to roundabout in case of manual driving Mode. 

In the Eva entrance scenario, we consider two potential intentions: intention 

to enter to roundabouts and intention to wait before the roundabouts, 

represented by a binary variable �, ���(�) = {��, ��}. 

We use information provided by the traffic situation as potential causes for the 

formation of intentions. We considered inputs from three alter vehicles inside 

the roundabouts: one vehicle in front (denoted as AN) and two vehicles behind 

(denoted as BN, BS) in roundabouts (Figure 22). The front and behind vehicles 

were defined relative to the “contact point” marked with red cross in Figure 

22. Approximately at this location, the TeamMate vehicle enters to the 

roundabout. It also could be defined as a first possible collision point between 

the TeamMate vehicle with any other vehicle inside the roundabout.  
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Figure 22: Schematic scheme of a roundabout. Contact point is marked with a red 

cross which depict the first entrance location of the TeamMate vehicle (shown in 

white) to the roundabout. The role of vehicles inside the roundabouts were defined 

relative to this point: AN (ahead next vehicle), BN (behind next vehicles) and BS 

(behind second vehicle) relative to the contact point. 

Presence, speed and distances of these 3 vehicles (1 in front and two behinds) 

to the TeamMate vehicle was considered as relevant variables that potentially 

influence driver intention. Moreover, the time headway defined as the time 

required for a behind vehicle to arrive to contact point was considered for the two 

behind vehicles (Table 3). 

Table 3: Summary of inputs from vehicles inside the roundabouts considered for 

modelling intention recognition in entering to the roundabouts. 

Variable 
Type  Description  

�� Binary  Presence: Represents whether there exists a vehicle 

� in the traffic situation. X ∈ {��, ��, ��} 
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�� Continuous Distance: Represents the distance between the 

TeamMate vehicle and a vehicle � along the course 

of the road. X ∈ {��, ��, ��} 

�� Continuous Speed: Represents the speed of a vehicle �. X ∈ {��, 

��, ��} 

�� Continuous Time headway: Represents the time required for a 

vehicle X to arrive to contact point defined by 

Distance of a vehicle � to contact point divided to 

the speed of a vehicle �. X ∈ {��, ��} 

 

Additionally, the speed of the TeamMate vehicle was considered as a relevant 

model variable, affecting the decision of the driver in entering to the 

roundabout.  

Although the speed of the vehicle is controlled by the driver’s decision to enter 

the roundabout or to wait before roundabout, the initial speed of the vehicle 

approaching to the roundabout would influence the driver decision. For 

example, in two identical “not heavy” traffic situation, the decision of driver 

might be differing if the driver is in full-stop (because of a very heavy traffic 

at the previous moment) or the vehicle is not in full stop (because it just arrives 

to the roundabout and still has an initial speed). In the case the driver is in full 

stop, he considers the required time for speeding up in his calculation of safe 

entrance maneuver, whereas, the vehicle approaching a roundabout could 

enter faster to the roundabout if he detects a safe distance to other vehicles.  

Therefore, we build two separate models for each of the two roundabout types 

in driving scenario. One model considering the variables described in Table 3, 

focusing on inputs from other vehicles (traffic situation) and refraining inputs 
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from TeamMate vehicle. Another model considering the speed of TeamMate 

vehicle as model variable in addition to inputs from other vehicles. 

The driving scenario for intention recognition contained two types of 

roundabouts: small roundabouts with a diameter of approximately 10 m and 

big roundabouts with a diameter of approximately 40 m. Because of the 

difference in dimensions, the range of the speed and gap size between vehicles 

inside the roundabouts were different (c.f. section 4.3.2.1.1). To interpret the 

resulting distributions and model outcomes, we analysed data from each type 

of the roundabouts separately. Such that we learned four models, two for small 

roundabouts and two for big roundabouts as explained above. 

For the formulation of the probabilistic intention recognition model, let �� 

denote the whole set of discrete and continuous variables representing the 

causes for the formation of intentions. 

The component for intention recognition, then is realized akin to a Maximum-

entropy Markov Model, where for any number of times steps � the (conditional) 

joint distribution �(��:�|��
�:�) is defined as: 

�(��:�|��
�:�) = �(��:�|��

�:�) � �(��|����, ��
�)

�

���

 

Meaning that intentions evolve based on the situational context encountered 

(explained in detail in deliverable D2.4 “Sensor Platform and Models including 

V&V results from 2nd cycle”).  

During runtime, the model can be used to continuously maintain a belief state 

over intention: 

�(��|��
�:�) ∝ � �(��|����, ��

�:�)�(����|��
�:���)

�∈�

. 
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The distribution for continuous variables were realized using Gaussian Mixture 

Models. We used structure learning method to identify the most important 

variables and their causal relations.  

Two resulting graph structure for big roundabouts is shown in Figure 23. The 

variables depicted with circles were presented to the model (see Table 3 for 

definition of the variables). The structure learning method selected the most 

important variables out of the presented variables (represented with black 

borders). The non-selected variables were shown in pale. The causal relations 

between variables shown with black arrows, where the pale gray arrows show 

possible causal relations, tested by the model but did not get selected. The 

right plot demonstrates the structure graph obtained considering only causes 

of the intention formation as the model variables. The left model included the 

speed of the TeamMate (��) as an extra variable during structure learning and 

resulted in a different selected set of variables. 
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Figure 23: Graph structure learned for big roundabouts using structure learning 

method.  

Similarly, Figure 24 depicts the resulting graph obtained for small roundabouts 

with (left) and without considering the speed of the TeamMate vehicle (right).  

 

Figure 24: Graph structure for small roundabout. 
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3.4 E3.1 – Situation and vehicle model 

The enabler E3.1 is now described in the next paragraphs, including its 

implementation. 

3.4.1 Semantic enrichment of the situation model 

Situation information from the perception layer like scene objects is enriched 

with semantic information, where enriched information describes the possible 

relationships and interactions between scene objects. Furthermore, the 

interaction and relationships are extended with the first ordered logic that 

allows to infer possible legal manoeuvres for vehicles in particular situations.  

The ontology for building the relationships between the scene objects, the 

semantic web rule language for modelling the first ordered logic of traffic rules, 

and the reasoner to infer the task were presented during the 1st cycle of the 

project, in D2.2 results are recorded on the simulated data.  

During the 2nd project cycle JNIOWLBridge was developed to integrate the 

concept presented in the 1st cycle of the project into the situation interpretation 

module. To recap JNIOWLBridge is wrapper that provides the bridge between 

the Ontology Web Language (OWL) and the reasoner which are available in 

Java to our C++ module. A brief illustration of the JNIOWLBridge is provided 

in D2.4. 

The JNIOWLBridge is linked to our C++ semantic enrichment module as a 

library. The ontology and logical rules used for the semantic enrichment was 

described in D2.2. The ontology contains the taxonomy and semantic relations 

of relevant scenes objects as pedestrian, road, vehicle, traffic light and signal. 

The logical rules described basic traffic rules in urban scenes. The semantic 
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enrichment module takes as input the detected scene objects and the modelled 

ontology and executes the following steps: 

1. loading of ontology by name 

2. generation of relations between detected scene objects (which are 

treated as individuals), such as “vehicle x is on lane y” 

3. adding of these individuals and theirs relations to the ontology 

4. inference of new relations between the individual objects 

5. inference of legally allowed manoeuvres per vehicle 

6. deletion of previously added individuals and relations from the 

ontology 

7. repetition of algorithm starting at step 2 

In the 3rd project cycle the ontology was extended in such a way that most 

AutoMate use cases can be addressed, with the option of achieving full 

coverage of the use cases which are targeted by the TeamMate car. To perform 

comprehensive validation and verification that could fulfil the AutoMate use 

case, sophisticated synthetic test data ����� was generated. An interface to 

fetch the ����� for semantic enrichment component is being implemented within 

the context of verification and validation cycle. With the planned use of this 

submodule as a prior for predicting the future evolution of the situation, its 

accuracy in real traffic could be used as weight for the prior.  

However, du to other ongoing integration activities, it has not been possible 

yet to determine the ultimate approach to the integration of the submodule in 

the final demonstration set up. The development of the submodule within the 

AutoMate project has shown that very sophisticated, complex and high 

accurate perception layer information is required to achieve the submodule’s 

required output quality. Together with project partners, we are undertaking a 
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continued effort to prepare the type of data from real world driving which 

possesses all required information for the submodule to run. This process has 

proven to be very time consuming yet imperative. 

Further, the integration of the reasoner itself into any more complex system 

the enabler may yield a runtime for the whole module which renders it 

insufficient to function properly within the system constraints. While it was 

possible to greatly reduce the runtime of the submodule, the runtime within 

the final system setup may be different matter 

3.4.2 Predicting the future evolution of the traffic scene 

The purpose of vehicle models is to predict the temporal and spatial evolution 

of the traffic scene (in the following simply referred to as traffic prediction), 

based on the information provided by the sensor and communication platform 

and the situation model, as a necessary input for online risk assessment (for 

more information on online risk assessment, we refer to D3.3 “Concepts and 

algorithms incl. V&V results from 1st cycle”, D3.5 “Concepts and algorithms 

incl. V&V results from 2nd cycle”), and D3.7 “Concepts and algorithms incl. V&V 

results from 3rd cycle”). 

Concept, development, and implementation of the algorithm pipeline for the 

traffic prediction have been entirely developed within the context of AutoMate. 

No part of the component has been inherited from previous projects nor 

simultaneously addressed in any other European projects.  

3.4.3 Concept 

The underlying concept for traffic prediction has already been described in 

detail in deliverables D2.2 “Sensor Platform and Models including V&V results 

from 1st cycle” and D2.4 “Sensor Platform and Models incl. V&V results from 
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2nd cycle”. In the following, we will recapitulate the most important aspects 

necessary for the understanding of the traffic prediction and provide any 

updates introduced for the third cycle.  

Let � = ���, … , ���
� denote a number of �� traffic participants detected in the 

vicinity of the TeamMate vehicle (if a prediction for the TeamMate vehicle is 

desired, the TeamMate vehicle can be considered as belonging to this set). At 

each time step �, the traffic prediction uses the environmental context 

information provided by the TeamMate vehicle’s sensor platform, to create a 

multivariate Gaussian belief state �(��
� ) for each � ∈ �, where  

�� = {��, ��, Θ�, ��, ��, ��}, 

with  

1. �� representing the global x-coordinate (in meters) of the centre of the 

bounding box of � in a two-dimensional spatial coordinate system, 

2. �� representing the global y-coordinate (in meters) of the centre of the 

bounding box of � in a two-dimensional spatial coordinate system, 

3. Θ� representing the yaw angle (in radians) of � relative to a constant 

reference axis, 

4. �� representing the longitudinal velocity (in meters per second) of � 

along its heading, 

5. �� representing the longitudinal acceleration (in meters per second 

squared) of � along its heading, 

6. �� representing the yaw-rate (in radians per second) of �. 

As previously described in deliverable D2.2 “Sensor Platform and Models 

including V&V results from 1st cycle” and deliverable D2.4 “Sensor Platform 

and Models including V&V results from 2nd cycle”, the prediction of the spatial 

and temporal evolution of the traffic scene is based on so-called Constant Turn 
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Rate and Acceleration (CTRA), resp. Constant Yaw-Rate and Acceleration 

(CYRA) motion models operating on a corresponding six-dimensional state 

space ��
� = (��

�, ��
�, ��

�, ��
�, ��

� , ��
�)�. 

Let Δt (in seconds) denote some prediction time, the state transition equation 

for this model is given by 

��
���� = �����(��

� , Δ�) =

⎝

⎜
⎜
⎜
⎛

��
����

��
����

��
����

��
����

��
�

��
� ⎠

⎟
⎟
⎟
⎞

, 

where 

����� =

⎩
⎨

⎧�� +
1

��
�

��

��
(cos ����� − cos ��) + ����� sin ����� − �� sin ��� , �� ≠ 0

�� + �
1

2
��(Δt)� + Δt ��� cos �� , �� = 0

, 

����� =

⎩
⎨

⎧�� +
1

��
�

��

��
(sin ����� − sin ��) − ����� cos ����� + �� cos ��� , �� ≠ 0

�� + �
1

2
��(Δt)� + Δt ��� sin �� , �� = 0

, 

����� = �� + Δt ��, 

and  

����� = �� + Δt ��. 

 

For the traffic prediction in the first cycle, we assumed the yaw-rate and 

acceleration to be kept constant, such that ����� = �� and ����� = �� for any 

temporal step width Δt and number of steps ����, i.e., we assumed that a 

traffic participant keeps the current yaw-rate and acceleration over the 

complete prediction horizon ����Δt. In the second cycle, we addressed this 
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limitation by using Dynamic Bayesian Networks (DBN) to infer the most 

probable behaviour amongst two hypothetical behaviours, lane-keeping (LK) 

and lane-changing (LC), for each traffic participant and incorporating simple 

but computationally inexpensive driver models to better predict the future 

behaviour of traffic participants for these behaviours. 

3.4.4 Improvements 

In the third cycle, we focussed on the improvement of the underlying driver 

models for predicting the lateral and longitudinal control of traffic participants. 

For this, we redefine the computation of the of the future state ��
���� as  

��
���� = ��������

� , Δ�, �, ������
� , ℎ� =

⎝

⎜
⎜
⎜
⎛

��
����

��
����

��
����

��
����

��
����

��
����⎠

⎟
⎟
⎟
⎞

, 

with � denoting the digital road map, ������
�   denoting the (potentially 

predicted) state of a potential vehicle ����� acting as the lead vehicle for �, and 

ℎ ∈ {��, ��} denoting the assumed behaviour. Here, ��
����, ��

����, ��
���� and ��

���� 

are provided by the original CYRA motion-model. In contrast, ��
���� is given by  

��
���� = �����

� , Δ�, �, ������
� , ℎ�, 

while ��
���� is given by 

��
���� = ��(��

� , Δ�, �, ℎ). 

For lateral control, ��(��
� , Δ�, �, ℎ), we assume that � adapts its yaw-rate in 

order to keep itself aligned with the course of the road while simultaneously 

minimizing the lateral deviation to the intended target lane. 
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For longitudinal control, �����
� , Δ�, �, ������

� , ℎ�, we assume that � adapts its 

acceleration in order to slowly reach the current speed limit (as given by the 

digital road map). If travelling on or returning to the right lane and 

approaching a lead vehicle, we assume the � adapts its acceleration to slowly 

zero the inverse time to collision to the lead vehicle. 

Given a multivariate Gaussian belief state �(��
� ) = �(��

� , Σ�
� ) and using the CYRA 

motion-model, we obtain a prediction for a future time step �(��
����) by 

approximating 

����
��Δ�� = �(��

����, ��
����) = � ��������

� , Δ�, �, ������
� , ℎ� �(��

� ) ���
�  

using the technique of unscented transformation (as previously described in 

deliverable D2.2 “Sensor Platform and Models including V&V results from 1st 

cycle”). 

To counterbalance the assumptions concerning the selected yaw-rate and 

acceleration, which will reduce the uncertainties over time, we inflated the 

resulting covariance matrix ��
���� in the following way: 

′��
���� = ��

���� + Δ�

⎝

⎜
⎜
⎛

max(0, �)

max(0, �)
0.01
1.0
0.1

0.00245 ⎠

⎟
⎟
⎞

�

��, 

where � is chosen such that the three-sigma interval of the lateral deviation 

of a vehicle driving in the middle of a lane would completely cover the lane. 

3.4.5 Implementation 

The internal procedure for the traffic prediction has been described in 

deliverable D2.4 “Sensor Platform and Models incl. V&V results from 2nd cycle”. 
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Concerning the actual implementation and integration into the TeamMate 

system architecture and demonstrators, the traffic prediction has been 

integrated together with the functionality for online risk assessment in respect 

to other traffic participants, the driver intention recognition, and the online 

learning into a single C++ Dynamically Linked Library. For integration into the 

ULM simulator, this library is wrapped in a so-called DPU, which is a format for 

exchangeable modules of the SILAB simulation software used by ULM. For the 

integration into the VED demonstrator the library is wrapped into a RTmaps 

package, which allows a seamless integration into the RTMaps system 

environment used by VED. 

3.4.6 Environmental context information 

The required input in terms of environmental context information of the overall 

module integrating the functionality of traffic prediction, online risk 

assessment, driver intention recognition, and online learning conforms to the 

TeamMate system architecture and consists of  

 the static environment model (including a digital road map) 

 the dynamic environment model (including the state of the TeamMate 

vehicle and the state of all dynamic objects detected by the TeamMate 

vehicle) 

 and an optional planned trajectory,  

as defined in deliverable D5.1 “TeamMate System Architecture including open 

API for 2nd cycle”. On an internal level, the traffic prediction operates on the 

following input (for a full definition, we refer to deliverable D5.1): 
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 The state of the TeamMate vehicle, consisting (limited to the required 

input for the traffic prediction) of the following information: 

o Timestamp: Timestamp of the measurement. 

o PositionX: x-position of the centre of the bounding box. 

o PositionY: y-position of the centre of the bounding box. 

o Heading: Heading in respect to the x-axis. 

o VelocityX: Velocity in longitudinal direction. 

o AccelerationX: Acceleration in longitudinal direction. 

o YawRate: Radial velocity. 

o PoseMotionCovMate: Covariance matrix for pose and motion. 

 In the case of simulator environments, this input can be provided 

directly by the simulation software, in the case of the VED real 

vehicle demonstrator, this is provided by the VED real vehicle 

internal sensors, e.g., a high precision GPS. 

 The state of all dynamic objects detected by the TeamMate vehicle, 

where each state consists (limited to the required input for the traffic 

prediction) of the following information: 

o Timestamp: Timestamp of the measurement. 

o ID: a unique and consistent ID, allowing the identification of the 

vehicle over time. 

o PositionX: x-position of the centre of the bounding box. 

o PositionY: y-position of the centre of the bounding box. 
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o Heading: Heading in respect to the x-axis. 

o VelocityX: Velocity in longitudinal direction. 

o AccelerationX: Acceleration in longitudinal direction. 

o YawRate: Radial velocity. 

o PoseMotionCovMate: Covariance matrix for pose and motion. 

o Length: Length of the bounding box in longitudinal direction. 

o Width: Length of the bounding box in lateral direction. 

o Existence Probability: Confidence that the detected object is 

existing. 

 In the case of simulator environments, this input can be provided 

directly by the simulation software, in the case of the VED real 

vehicle demonstrator, this is provided by the VED real vehicle 

external sensors, e.g., LIDARs. 

 A digital road map that allows a reasonable reconstruction of the road 

structure along the prediction horizon for each considered object that 

shall be predicted. In the case of simulator environments, such a map 

can be constructed beforehand based on the simulation scenario. In the 

case of the VED real vehicle demonstrator, a map of the VED test course 

has been provided by VED. 

As apparent from this list, the traffic prediction does not process any personal 

or private data. 
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3.5 Driving Task Model 

The Driving Task model is described in the following sections. 

3.5.1 Scenario and use cases where the driving task model is relevant 

Although the driving task (DriveGOMS) model approach is not a technical 

enabler, it supports the development of the HMI concept of the TeamMate car 

concept. Specifically, together with ULM we are using it to develop a better 

understanding of the task structure behind the Peter use case. The focus is on 

how the drivers/users of the TeamMate concept see their task, interact with 

the system, monitor the environment, and make decisions. As in deliverable 

D4.4 Metrics and plan for V&V of the TeamMate HMI software in the 2nd cycle 

described, the knowledge from the modeling is then applied to enabler E6.1. 

3.5.2 Improvements 

During the 2nd cycle a preliminary model had been developed within an 

exploratory study in the ULM simulator. From this, we had derived an initial 

model for the task structure in the Peter scenario. The main work during the 

3rd cycle went towards the validation of the model. To this end, we conducted 

and analysed a study at DLR using our methodology, attempting to replicate 

the task model we had identified from the data the ULM sample had provided. 

This experiment is described in section 4.4.  

3.5.3 Comparison with similar State-of-the-Art approaches 

Task analysis as used within Human Factors are not software systems, but 

methodologies to collect, prepare and analyse data about situations of interest. 

Their goal is not necessarily to predict individual human behaviour on a time 
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scale of seconds, but rather produce an insight into the basic goal structure of 

the task of interest. This is crucial information in the context of the design of 

Human-machine interfaces, as the design of the interface is also a design of 

the task itself. Further, a detailed understanding goals, cognitive, perceptual 

and motor aspects of a task greatly aid the formulation about specific aspects 

of the Human-machine interaction, which can then be further investigated in 

targeted experiments. This is the approach we are following regarding Enabler 

E6.1. 

Of course, there are other approaches to driver modelling, as well as other 

task analysis methods. In our opinion, however, they are unsuitable for our 

specific purpose. The literature both on driver modelling and task analysis is 

vast, and a complete review would be impossible within the available space 

here. 

There exist a few notable approaches to driving task analysis. The work of 

McKnight and Adams7 from 1970 details thousands of single tasks or activities 

which need to be carried out under certain conditions when driving a car. The 

intended use of this work was improving driving school education.  

However, it is neither complete (i.e., covers every conceivable situation), nor 

specific enough to be applied unambigously given a specific situation. For 

example, it states that when changing lanes, it should be checked for vehicles 

approaching from the rear on the new lane. It does not say though what might 

be an acceptable distance, differential speed or time-to-collision where a lane 

change still might be possible to change lanes.  

                                    

7 McKnight, A. J., & Adams, B. B. (1970). Driver Education Task Analysis. Volume II: Task Analysis Methods. Final Report. 

Washington, DC. 
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Being from 1970, of course it does say little about interactions with in car 

devices, or even how a driver could or should work together with an automated 

vehicle (such as the TeamMate car).  

Another example is part of the Generic Intelligent Driver Support (GIDS8), the 

result of a European project from the early 1990s. It connects task analytic 

approaches with a specifically designed Small World to study and support 

human driving. Unfortunately, this task analysis is only documented in 

excerpts. Further, in our estimation, the task analysis and situation modelling 

work mainly because of the small world approach, which sets important 

constraints. This markedly differs from the TeamMate approach, where real 

world situations are addressed. 

A wider known computational model stemming from the task analysis based 

tradition is Distract-R9. This is essentially a tool which computes task execution 

times of secondary tasks during manual driving. It is based on a driver model 

implemented in the cognitive architecture ACT-R10. Unfortunately, it models 

only a very small class of problems, namely driving on a straight vs curved 

road, while entering numbers into a cell phone via different input methods.  

Thus, the available task analytic or even computational methods derived from 

them do not sufficiently cover the aspects relevant for AutoMate. Further, our 

DriveGOMS-approach puts special emphasis on qualitative empirical methods, 

which are used together with quantitative approaches (such as eye tracking) 

                                    

8 Michon, John A. (Hg.) (1993): Generic Intelligent Driver Support. A comprehensive report on GIDS. London: Taylor & 

Francis. 

9 http://cog.cs.drexel.edu/distract-r/ 

10 https://www.cs.drexel.edu/~salvucci/publications/Salvucci-HF06.pdf 
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to develop a full understanding of drivers’ goals and strategies to task 

execution. This is an indispensible source of information which needs to be 

considered for the development of enabler E6.1.  

Regarding machine learning based approaches to driver modelling such as 

E2.1 (Driver Intention Recognition), of course they are essential when trying 

to predict driver behavior in specific situations, especially when trying to 

achieve online prediction. In our estimation, here they are usually superior to 

rule based driver modelling approaches, since the pattern behind driver 

behavior often depends on complicated relationships between several 

continuous variable.  

However, the model’s behavior has to be learned explicitely. Small changes in 

the scenario, such as using different input methods to trigger the lane change 

maneuver in the Peter scenario require conducting empirical studies recording 

this exact behavior from human subjects. When trying to explore a design 

space, it is often preferable to iterate quickly through different possible 

solutions, and arrive at “guestimates” for expected driver behavior which can 

exclude bad design choices and help state hypotheses that can be tested with 

a larger sample.  

It is for these types of scenarios where we believe DriveGOMS is a valuable 

addition to the toolkit the Human Factors researcher has available. While it is 

often desirable to predict behavior, sometimes it is more important to 

understand why a certain behavior has been shown, as well as describing it 

with a symbolic notation. These are two further very important features of 

DriveGOMS. Our validation of this approach for the Peter scenario is reported 

in section 4.4.  
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4 Validation of enablers 

This section presents the verification and validation on component level of the 

enablers, i.e. how to validate that the enablers support the cooperation of the 

driver and the TeamMate car, in their final stage.  

4.1 E1.1 – Driver monitoring system with driver state model for 

distraction and drowsiness 

In the previous cycles we have performed drowsiness tests on a set of 60 

hours of recording on 30 drivers in simulator conditions and presented related 

performance results.  

The experiments of the third cycle have focuses on Visual distraction which is 

the output required for the Martha scenario. 

4.1.1 Drowsiness experiment 

The experiments of the previous cycles were conducted in the static vehicle. 

The camera was placed in its nominal position: behind the steering wheel 

looking upward of about 17° through the steering wheel. The aim of these 

tests were to validate the performances of the instrument identification output.  

The tests protocol consisted on asking subjects to look at different areas of the 

vehicle in agreement with the Automate requirements.  

The experiments were performed with N=20 drivers. 10 men and 10 women; 

5 wearing glasses. The raw video provided by the driver monitoring system 

were recorded and analysed offline. 

The analysis has shown that for drivers not wearing glasses all areas are 

detected with a detection rate above 75% which is already fully acceptable 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<27/12/2018> Named Distribution Only 

Proj. No: 690705 

Page 77 of 

123 

 

regarding the automate requirements. Still instruments close to the driver 

(central mirror, navigation display…) are not as well detected than the one 

further (left and right mirrors). This can be explained by the fact that the head 

gaze accuracy is better than the eye accuracy and the driver moves the head 

to look at far instrument while it will mainly move the eyes when the 

instruments are close.  The results have also shown a performance variability 

depending on the subjects.   

 

In this third cycle the driver monitoring system was integrated in the 

demonstrator vehicles and validation tests were initiated. In this report will 

focus our presentation on the tests performed with the Vedecom Picasso C4 

demonstration car. Because of the non optimal position of the camera it is 

expected some performance degradation. 

4.1.2 Test protocol 

The purpose of this test is to determine a generic calibration of the driver’s 

eye/head gaze and estimate the DMS performances regarding the area 

detection The test is performed in door in the Vedecom C4 picasso 

demonstrator car on 18 employes of Vedecom. Subjects are asked to look at 

various areas out and inside the cockpit according to the defined following 

sequence: 

4.1.2.1 Step 1: Initialisation; duration: 40s 

 Open the door, enter the car 

 Adjust seat, position, put Seatbelt ON 

 Start recording 
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 Adjust right mirror, left mirror and rear mirror 

 Look at the road in front.  

 The instructor will precise when to start moving the head.  

 

 

 

 

 

 

4.1.2.2 Step 2: focus on Automate Display; Duration: 5s 

 Look at the Automate Display 

 Back to road (neutral position) 

 

 

 

 

4.1.2.3 Step 3: focus on Instrument Cluster; Duration: 5s 

 Look at the Instrument Cluster 

 Back to road (neutral position) 
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4.1.2.4 Step 4: focus on Central Display; Duration: 5s 

 Look at the Central Display 

 Back to road (neutral position) 

 

 

 

 

 

 

4.1.2.5 Step 5: focus on right rear-view mirror; Duration: 5s 

 Look at the right-side mirror 

 Back to road (neutral position) 

 

 

 

 

4.1.2.6 Step 6: focus on left rear-view mirror; Duration: 5s 

 Look at the left-side mirror 

 Back to road (neutral position) 
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4.1.2.7 Step 7: focus on central rear-view mirror; Duration: 5s 

 Look at the rear-view mirror 

 Back to road (neutral position) 

 

 

 

 

4.1.2.8 Step 8: focus on Central Display; Duration: 5s 

 Change the radio frequency 

 Back to road (neutral position) 

 

 

 

 

4.1.2.9 Step 9: focus on Right Windshield; Duration: 5s 

 Look at the right Windshield (The subject 

must look at a post it placed outside so his 

gaze intersect the WS right in the middle 

horizontally and quarter of the bottom) 

 Back to road (neutral position) 
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4.1.2.10 Step 10: focus on Passenger Seat; Duration: 5s 

 Look at the smart phone placed on the  

passenger seat  

 Back to road (neutral position) 

  

4.1.2.11 Step 11: focus on Knees; Duration: 5s 

 Take the smart phone and place  

it on your left thigh 

 Read the message written on it 

 Back to road (neutral position) 

 

4.1.2.12 Step 12: focus on blinks; Duration: 10s 

 Make some blinks 

 Do whatever you want for a few seconds. 

 Back to road (neutral position) 

 

4.1.3 Results 

This section describes the results achieved so far for the DMS, considering both 

the quantitative and qualitative analysis. 
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4.1.3.1 Quantitative analysis 

The table below show the average statistics on 50% of the “best performing 

drivers”. These results confirm the results presented in the previous cycle: 

The instrument display and the automate display are not as well detected as 

further instruments.  It points out the difficulty to make the difference between 

the displays automate and instrument cluster and the windshield right. This is 

explained by the fact that these displays are closer to the bottom of the 

windshield that the ones of the previous test cycles. 

We can note that the seat and knee area are badly detected due to the high 

head pitch. The detection of these areas is not required within automate still 

CAF will investigated further these issues as we think it would of interest to 

provide such information allowing to introduce off road levels. 

  

 

Table 4: DMS performances with respect to the different areas inside the vehicle. 

4.1.3.2 Qualitative analysis 

A qualitative analysis based on a visual analysis of the DMS video output shows 

heterogeneous results: for some subjects, the "eye gaze" point perfectly on 

the corresponding instrument while for others it is not at all the case. 
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Indeed some people have the look that points excessively down while others 

have the look that points abnormally up (this is especially the case of people 

with glasses). 

 

 

 

 

 

 

 

 

Figure 25: DMS video outputs (considering glasses as well). 

 

 

It was therefore interesting to first analyze whether this abnormal behavior in 

these people was correctable via a fixed offset to "calibrate" the trajectory of 

their "eye gaze". Taking as an example the people in whom the results are 

very good, the offsets were calculated, and the conclusion was to see that the 

results were on the one hand much better but also showed that this offset was 
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not fixed: indeed, if for some instruments it was much better, for others it was 

less than before). 

 

To solve this problem, one solution would be to perform a manual calibration 

for each person preliminary to the drive test. 

To do this, we could invite the person the first time they get in the car observed 

each instrument for 5 secs, and automatically calibrate their eyes on the center 

of the instrument (thus an offset would be assigned for each instrument and 

for each person).  This solution will be proposed to the partners.  
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4.2 E1.2 – V2x communication 

During the 3rd cycle, conformance testing and field tests were performed. The 

conformance testing was took place in the test track of Satory (an area south 

of Versailles in France). An RSU was set up, and its broadcasted messages was 

received by an OBU from YoGoKo. The OBU was integrated in the test car. The 

purpose of such test is to confirm that the Cohda MK5 unit and YoGoKo’s OBU 

unit are able to communicate and understand each other thanks to the 

standardized protocols. The tests were successful, thus, field test was carried 

out there to measure the communication distance of the RSU. Taking into 

account the environment of the test track it can be classified as rural 

environment. Based on numerous measurement the communication distance 

was around 600m, which fulfils the 400m threshold value that was set in 

Deliverable 2.511. The deployment of the RSU and the measured 

communication distance in Satory test track are depicted in Figure 26. 

                                    

11 AutoMate Deliverable 2.5: “Metrics and Experiments for V & V of the driver, vehicle and 

situation models in the 3rd cycle” 
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Figure 26: Communication distance measured in Satory test track 

Furthermore, field test was performed in Budapest as well. The selected place 

was the Óceánárok utca, which can be classified as rural-suburban 

environment located in north Budapest. The preparation and the cars used for 

the field test are visible in Figure 27. Similarly, the placement of RSU and 

measured distances are illustrated in Figure 28. 
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Figure 27: Antenna placement and cars used for the field test in Óceánárok utca 

Antenna of OBU Antenna of RSU 
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Figure 28: Measured communication distances from the position of RSU (it is 

located in the same place): 634m northward (left) and 526m southward (right) 

In the previous cases the DENM-RWW message was configured as it was 

presented in D2.5. 

Then, log files of previous field test around BIT’s office was also used to 

determine the communication distance. The office is located in Ürömi utca, 
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Budapest, which is an urban canyon from wireless communication perspective. 

Here, we measured around 400m, where message was still transmitted 

between the devices. This measurement is illustrated in Figure 29, while Figure 

30 shows the visualization framework including the sign of road works ahead. 

Finally, the reliability of the communication was also checked. During the field 

tests there was no incorrect message received from the RSU. That is probably 

because the Geonetworking layer or the MAC layer of the protocol stack discard 

any wrong packets. 

 

 

Figure 29: Communication distance measured in urban environment 
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Figure 30: Part of the visualization framework. The upper section shows the road works 

warning sign with some additional information. The lower section includes the instruments 

with speed limit sign in the road work area.  
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4.3 E2.1 – Driver Intention Recognition 

Following the plans described in deliverable D2.5 “Metrics and Experiments for 

V&V of the driver, vehicle and situation models in the 3rd cycle”, validation of 

the driver model for intention and behaviour recognition was performed using 

sets of independent test data �����, representing annotated “ground-truth” 

time-series of manual driving on rural roads, akin to the Peter scenario, and 

time-series of manual driving in the vicinity of roundabouts, akin to the Eva 

scenario, using a variety of metrics, extending the formal requirements for the 

technical validation of E2.1 as stated in deliverable D1.5 “Definition of 

framework, scenarios and requirements incl. KPIs & Baseline for 3rd cycle”. A 

summary of relevant requirements is shown in Table 5. 

Table 5: Requirements and metrics used for the technical validation of E2.1 

Requirement 
Metric Success criteria 

R_EN2_model2.6 Correct rate of the 

classification 

>80% 

 

4.3.1 Driver intention recognition in rural road scenarios 

Section 3 presented two alternative models for driver intention recognition on 

rural roads developed during the third cycle, referred to as �� and ��, with �� 

allowing for interdependencies between continuous variables. Solely focusing 

on intention recognition, both �� and �� can be used for intention recognition 

in automatic mode, by inferring �(��|��:�, ��:�), or for intention recognition in 

manual mode, by inferring �(��|��:�, ��:�, ��:�). 
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4.3.1.1 Validation process 

To recapitalize the overall validation process and metrics used for this 

validation cycle, let ����� be composed by a number of � trials, where each 

trial is a time-series consisting of a number of ��, � = 1, … , � complete data 

samples ��
� = ���

�, ��
�, ��

�, ��
�, ��

�, ��
�, ��

��, � = 1, … , ��. The necessary annotations for 

the hidden intentions, behaviours, desires, and opportunities were obtained 

during post-processing (for a more detailed description, we refer to Section 

4.3.1.2).  

As in the previous cycles, we are primarily interested in the performance of 

the model concerning intention recognition when the automation is in control, 

therefore neglecting the influence of the component for behaviour recognition. 

As such, for each sample ��
�, we used the models �� and �� to infer a filtered 

belief state over the intentions ����
�|��

�:�, ��
�:��, given all available sensory input 

in the resp. time-series up to the sample. The output of the models was then 

defined as the most probable target lane intention 

��,���
� = arg max

�
����

� = �|��
�:�, ��

�:��. 

For the assessment of intention recognition, the (annotated) “true” and 

predicted target lane intentions ��
� and ��,���

�  were first mapped onto actual lane 

change intentions (in that a lane change intention is present if the current lane 

and the target lane intentions differ) by defining ��̂
� = ����

� ≠ ��
�� and ��̂,���

� =

����
� ≠ ��,���

� �, where � denotes the indicator function. Interpreting the existence 

(we note that the ground truth is based on a manual annotation of the test 

data and therefore subject to error) of a lane change intention as positive and 

the absence as negative, we constructed a binary confusion matric for each 

model, as shown in Figure 31. 
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  Predicted 

  Positive Negative 

Ground truth 
Positive  TP FN 

Negative FP TN 

Figure 31: Binary confusion matrix.  

Following deliverable D2.5 “Metrics and Experiments for V&V of the driver, 

vehicle and situation models in the 3rd cycle”, we then derive the following set 

of metrics, summarizing different aspects of the performance of the model: 

 The accuracy, representing the fraction of correctly recognized samples 

among all samples, defined as 

��� =
�� + ��

�� + �� + �� + ��
. 

 The precision, representing the fraction of correctly recognized 

intentions among all predicted intentions, defined as  

��������� =
��

�� + ��
. 

A high precision indicates that the model only recognizes intentions if 

there truly exists an intention. 

 The recall (also known as sensitivity or true positive rate (TPR)), 

representing the fraction of correctly recognized intentions over the total 

amount of true intentions, defined as 

������ =
��

�� + ��
. 

A high recall indicates that most of the intentions are recognized as such. 

 The harmonic mean of precision and recall, the traditional F-measure or 

balanced F-score, defined as 
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�-����� = 2
��������� ⋅ ������

��������� + ������
. 

 And, for the sake of completeness, the False Positive Rate (FPR), defined 

as  

��� =
��

�� + ��
. 

Requirement R_EN2_model2.6 states a required correct rate of classification 

≥ 80%. When interpreted strictly, the correct rate of classification refers to the 

accuracy, representing the fraction of correctly recognized samples among all 

samples. However, as the accuracy involves both the correct recognition of the 

presence of an intention and the correct recognition of the absence of an 

intention (which are usually dominating in amount), we extend the 

interpretation of R_EN2_model2.6 to both precision and recall, which focus on 

the actual recognition of the presence of intentions. 

As described in deliverable D2.5 “Metrics and Experiments for V&V of the 

driver, vehicle and situation models in the 3rd cycle”, in addition to the 

classification performance, we are interested in assessing the runtime 

performance, in terms of execution times, of the driver intention recognition. 

Although no formal requirement exists to limit the potential execution time for 

each inference, driver intention recognition on rural roads is intended to 

provide an output at a frequency of 20Hz, i.e., every 50ms. Given that the 

intention recognition must share computational resources with other systems, 

we aim at an average execution time ≤ 10ms. 

Using an empirical approach for assessing the runtime performance for driver 

intention recognition on rural roads, we measured the average execution time 

required for performing inferences of interest in the proposed models �� and 

��. 
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4.3.1.2 Datasets used 

For the development and validation of the probabilistic models for driver 

intention recognition on rural roads, OFF, ULM, and HMT conducted a dedicated 

simulator study in the OFF driving simulator, as described in detail in 

deliverable D2.5 “Metrics and Experiments for V&V of the driver, vehicle and 

situation models in the 3rd cycle”. 

During data preparation, each data sample was first manually annotated with 

the shown driving behaviour (LCL, LCR, or LK) based on visual judgement of 

the traffic situation and key measurements, such as e.g., heading angle, 

lateral deviation, and steering wheel angles, using an editor to visualize the 

recorded data (Figure 32). 

 

Figure 32:Screenshot of an internal tool used for the annotation of experimental 

data. 

Afterwards, each sample was automatically annotated with whether the driver 

intended to drive on the right or on the left lane, based on the provided 
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definition of intentions in that a change in the target lane intention is assumed 

to be formed at least up to one second prior to the annotated beginning of a 

lane change manoeuvre (c.f., section 3.3.2.1). 

During the experiment, participants had to signal their desire to overtake by 

pressing a button on the steering wheel. For the annotation process, we 

automatically labelled the sequence beginning with the press of such button 

until the actual lane crossing for the final overtaking as the presence of a 

desire. Furthermore, we labelled each situation in the actual and the target 

lane differed as such that an opportunity was present and absent otherwise. 

Lastly, we automatically relabelled LK behaviours in which a desire was 

present, but no opportunity given as CF. 

During post-processing, the trial of a single participant was removed due to a 

(virtual) crash, possible changing the subsequent behaviour of the 

participants. As such, the result of the annotation process was a set of 35 

coherent time-series of multivariate data for manual driving in the (simplified) 

rural road scenario. From this annotated experimental data, we selected 24 

sequences (approx. 67.5% of the overall data) as a training set ������, 

consisting of 2138134 samples or approx. 594 minutes, while the remaining 

11 trials, consisting of 1029216 samples or approx. 286 minutes were reserved 

as a test set ����� for validation. 

As described in section 3.3.2.3, the graph structures and parameters of the 

models �� and �� have been learned exclusively using the training data ������. 

The resulting models were then subsequently validated on the test set �����. 

Being temporal models, intended to provide an output each 50ms, we only use 

every third sample for the actual validation, resulting in an effective test set 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<27/12/2018> Named Distribution Only 

Proj. No: 690705 

Page 97 of 

123 

 

�����, consisting of 343076 samples, covering 286 minutes of driving over each 

one trial for each of the 16 participants.  

4.3.1.3 Results: classification performance 

Figure 33 shows the results for intention recognition on rural roads in 

automatic mode using the model �� in terms of a binary confusion matrix and 

corresponding metrics. To allow an additional interpretation of the results, 

additional values in brackets denote the corresponding values if we limit the 

focus on the case, where the driver was located on the right lane, therefore 

allowing the interpretation of intentions purely as overtaking intentions. 

  

Figure 33: Confusion matrix and corresponding metrics of interest for ��, assuming 

automatic mode. 

As apparent, the model �� achieves an overall high accuracy, precision, and 

recall. For comparison, Figure 34 shows the results for intention recognition 

on rural roads in automatic mode using ��. Compared to the results for ��, 

we see an additional improvement of all metrics.  
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Figure 34: Confusion matrix and corresponding metrics of interest for ��, assuming 

automatic mode. 

Given these results, we can conclude the requirement R_EN2_model2.6 to be 

fulfilled for both �� and �� in automatic mode, for accuracy as well as precision 

and recall. 

When incorporating the influence of the component for behaviour recognition 

in manual mode, i.e., using ����
�|��

�:�, ��
�:�, ��

�:�� = ∑ ����
�, ��|��

�:�, ��
�:�, ��

�:���∈�  instead 

of ����
�|��

�:�, ��
�:��, we are able to slightly improve the accuracy, precision, and 

false positive rate, but slightly decrease the recall and (consequently) F-score 

for both �� (Figure 35) and �� (Figure 36). Comparing Figure 33 and Figure 

35 for ��, resp. Figure 34 and Figure 36 for ��, we see that using 

����
�|��

�:�, ��
�:�, ��

�:��, results in a decrease of false positives for the price of a 

(relatively higher) increase of false negatives. This can be interpreted as the 

models being more conservative when considering the behavioural effects, 

requiring the human behaviour to match the expected effects of a potential 

intention before classifying a situation as an overtaking intention.  

  

Figure 35: Confusion matrix and corresponding metrics of interest for ��, assuming 

manual mode. 
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Figure 36: Confusion matrix and corresponding metrics of interest for ��, assuming 

manual mode. 

Given these results, we can conclude the requirement R_EN2_model2.6 to be 

fulfilled for both �� and �� in manual mode, for accuracy and precision, but 

nor for recall. 

When compared to the results obtained during the second cycle (c.f. 

deliverable D2.4 “Sensor Platform and Models including V&V results from 2nd 

cycle”), we have achieved a major improvement in all metrics considered. 

Although this improvement may be owed to the different experimental data 

obtained in a more controlled simulator experiment, we believe that we 

managed to improve on the theoretical problems of the driver models in the 

second cycle. In the remainder of the project AutoMate, we will test this 

assumption by adapting the models for driver intention recognition on rural 

roads to the experimental data used in the second cycle. 

4.3.1.4 Results: runtime performance 

For an empirical approach for measuring the computational performance of 

the driver intention recognition on rural roads, we measured the average 

execution time required for performing inferences of interest in the proposed 

models �� and ��. 
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Execution times were calculated as the average time required when performing 

inferences for all 343076 samples comprising the test set using an i7-6700 

CPU @ 3.40GHz, 16GB desktop computer, running a Microsoft Windows 10 64-

Bit operation system. The algorithms were compiled as 64-Bit applications 

using Visual Studio 2017 and we measured individual execution times in 

nanoseconds using the high_resolution_clock provided by the std::chrono 

library. We note, that these results measure the necessary time for performing 

inferences in isolation, and do not include the necessary time for the 

interpretation of the sensor data or updating any graphical user interfaces. 

The results are shown in Table 6. As apparent, the average execution time for 

driver intention recognition is well below 1ms even for all considered models 

and inference queries, which fits well into the intended frequency of execution 

of 20Hz and is well below the aim of an average execution time ≤ 10ms.  

Table 6: Average computation time for the prediction of the temporal and spatial 

evolution for a single object for different number of vertices per corner polygon. 

Model Inference query Average inference time (ms) 

�� ����
�|��

�:�, ��
�:��  0.131 

�� ����
�|��

�:�, ��
�:�, ��

�:��  0.409 

�� ����
�|��

�:�, ��
�:��  0.109 

�� ����
�|��

�:�, ��
�:�, ��

�:��  0.360 

4.3.1.5 Privacy 

Finally, addressing requirement R_EN2_model2.7, we note that the 

probabilistic models and algorithms for driver intention recognition do neither 

hold, retrieve nor process any personal data of the driver in a not anonymized 

way. 
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4.3.2 Driver intention recognition in roundabout scenarios 

In the third cycle we extended the model to one more driving intention in 

addition to overtaking another car. Eva scenario was chosen to reflect the 

driver intention in entering roundabouts dealing with the questions: When are 

the proper times to enter the roundabouts? Which traffic situations were taken 

by the human driver to enter the roundabouts? 

4.3.2.1 Experiments for data gathering 

To collect the data for driver intention recognition model in the third cycle, the 

Automate partners HMT and OFF conducted experiments in OFF driving 

simulator. The goal of these experiments was to study the intention of the 

driver in entering to the roundabouts. Therefore, different traffic situations 

were presented in driving simulator to detect the proper situation in which the 

driver would intend to enter to the roundabouts. 

4.3.2.1.1 Scenario 

The driving scenario containing several instances of two distinct urban 

roundabouts (with a general speed of 50 km/h) were used to identify the 

intention of driver in entering to the roundabout. The two distinct roundabouts 

were initially suggested and designed by the Automate project partner REL: A 

small roundabout with approximate diameter of 10 m and a big one with 

approximate diameter of 40 m. 

The Automate project partner OFF, adapted these roundabouts and build a 

driving scenario which contained 8 instances of big roundabouts and 7 

instances of small roundabouts. In the driving scenario these instances were 

connected to each other with urban roads. Extra instances of rural roads (with 
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a maximum speed of 100 km/h) were used between groups of three 

roundabouts instances, producing a smoother and less boring driving scenario. 

In total 4 tracks of rural roads were used in each scenario. 

In order to study driver intention to enter the roundabouts, various traffic 

situations were presented in each of the roundabout’s instances. The 

maximum number of 4 vehicles were used to simulate different traffic 

situation, altering following factors that potentially influence driver intention: 

The gap size between vehicles driving through the roundabout: 

 For the big roundabouts the gap size varied between 20 and 100 m with 

approximate values of {20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 80, 85, 

95} meters 

 For the small roundabout the gap size varied between 10 m as the 

minimum distance between two vehicles allowed in the OFF driving 

simulator, and 50 m, including approximate gap sizes of {10, 15, 20, 

25, 30, 35, 40, 45, 50} meters 

The speed of vehicles driving inside the roundabout:  

 speed values varied among {36, 43, 47, 50} km/h for the big 

roundabout  

 and {15, 18, 25} km/h for the small roundabouts 

4.3.2.1.2 Participants and procedure 

The experimental sessions were announced in local university (University of 

Oldenburg). 25 participants with valid driving licenses were participated in the 

study. 4 of the participants felt motion sickness and could not continue the 

experiments. Therefore, the data collected from 21 participant (12 males and 
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9 females) was used for modeling. The participants have an average age of 26 

years old, the average driving mileage of 14014 km per year and an average 

driving experiences of 8 years.  

After reading the handout of the instruction and filling the consent form, the 

participants performed a training session in which they drove approximately 

10 minutes to get used to the vehicle control in the driving simulator. Then 

the participants drove through the scenario two times. Each time took about 

12 to 15 minutes and the participants had a break of about 5 to 10 minutes 

between the two sessions. At the end the participants filled the questionnaire. 

The whole experiment took about 1 hour for each participant and they received 

a compensation of 10 Euro for their participations. 

4.3.2.1.3 Data preparation 

Because we were interested to study the intention formation in entering the 

roundabouts, we focused on the parts of the data related to entering to the 

roundabouts. Specifically, we extracted the pieces of the data from the time 

where the TeamMate vehicle locates in the vicinity of the roundabout (30 

meters before entering the roundabout) until the time which the TeamMate 

vehicle locates inside the roundabout lane. The remaining part of the data was 

removed without further processing. 

To annotate the data, we observed the speed and acceleration pattern of the 

participants in the vicinity of the roundabouts. Approaching to the 

roundabouts, the participants reduced their speed and evaluated the traffic 

situation inside the roundabouts. Then they either entered directly to the 

roundabout with a reduced speed or they further reduced their speed until 

they stopped fully before the roundabout and were waiting for a proper 
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moment to enter to the roundabout. As soon as they evaluated the traffic 

situation as “probable” proper to enter the roundabout they slightly 

accelerated (push the gas pedal gently) to be in a “start state”. At this point 

they perform their final evaluation, and either accelerated more and entered 

to the roundabout (entrance behaviors), or they reduced their speed and 

stopped again and waited for the next proper moment. For annotating the 

data, we first searched for the entrance behavior, then we found the last slight 

push of the gas pedal before entrance behavior. The intention set to one as 

intended to enter to the roundabouts, for the whole duration of start state until 

entering to the roundabouts. The intention annotated to zero as not intended 

to enter to the roundabout, for the time before start state. In the case of direct 

entrance of TeamMate vehicle to the roundabouts, the intention set to 

intended to enter to the roundabout for the whole data section. 

4.3.2.2 Validation process 

To validate the model, we inferred a filtered belief state over the intentions 

� ���
�|���

�:��, given all available sensory input in the test time-series (�����) for 

each trial up to the sample. Where ��, � = 1, … , � denotes the number of data 

samples and m denotes the number of test trials. ��
� = ���

�, ���
�� , � = 1, … , ��, is 

annotated considering the speed and acceleration pattern of the TeamMate 

vehicle (described in section 4.3.2) with the assumed correct intention ��
�. 

As such, the output of the model was then defined as the most probable driver 

intention  

��,���
� = arg max

�
� ���

� = �|���
�:�� 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<27/12/2018> Named Distribution Only 

Proj. No: 690705 

Page 105 of 

123 

 

For the assessment of intention recognition, the (annotated) “true” and 

predicted intentions  ��
� and ��,���

�  were used. Interpreting the existence of 

intention to roundabouts as positive and the absence as negative, we 

constructed a binary confusion matric for each model, as shown in Figure 31, 

and derived the metrics of accuracy, precision, recall, F-score, and FPR (see 

Section 4.3.1.1) based on the confusion matrix. 

4.3.2.3 Datasets used 

Each driving scenario (trial) contained 8 instances of big roundabout and 7 

instances of the small roundabouts. We collected two trials from each of 21 

participants and extracted and annotated the entrance sections to the 

roundabouts as explained above.  

From every 4 trials, we used 3 trials for training data, 75% of the experimental 

data, and one trial for testing, 25% of the experimental data.  

In total training data ������ for small roundabouts consisted of 106018 samples 

(approx. 30 minutes), and the test data �����  contained 35806 samples 

(approx. 10 minutes). The total training data ������ for big roundabouts 

consisted of 116875 samples (approx. 32 minutes), and the test data ����� 

contained 34876 samples (approx. 10 minutes). 

4.3.2.4 Results 

As explained in the section 4.3.2.1, the driving scenario for intention 

recognition contains two types of roundabouts: a small roundabout with a 

diameter of approximately 10 m and a big one with a diameter of 

approximately 40 m. The difference between the diameters result in different 

range of the speeds for alter vehicles inside the roundabout. Moreover, the 
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gap size between vehicles were spanning a smaller range in the small 

roundabouts. 

Therefore, we analysed the data for each roundabout separately to be able to 

interpret the outcomes of the models and to better understand the 

distributions of variables. Once the roundabout model is understood, a single 

model can be trained using the datasets from both types of the roundabouts. 

Such that, we trained two models for big roundabouts, one focusing on the 

traffic inputs and refraining the speed of the TeamMate Vehicle and including 

both traffic inputs and the speed of the TeamMate vehicle. Similarly, two 

models were learned for the small roundabouts. The details of the traffic input 

variables are explained in detail in section 3.3.3.2. 

Speed of the vehicle is regulated after formation of the intentions and could 

be considered as an effect of intention; however, the speed of the vehicle plays 

a role during making the decision to enter the roundabout. If the vehicle has 

an initial speed compared to the full stop state before roundabouts, it could 

enter faster to the roundabout, indicating that the smaller gap size could be 

used to enter the roundabout. However, the same driver would require longer 

time, if he was in stop state (maybe because of a heavy traffic situation at a 

while before).  

 

As a reminder, the resulting structures for the small roundabouts are shown 

in Figure 24, section 3.3.3.2. The graph structures depict the important factors 

chosen by the model to identify the intention of the driver. In the model for 

the small roundabouts with traffic inputs, the presence of the alter vehicles 

inside the roundabouts and their distances to the TeamMate vehicle was 

chosen as important factors to identify the intention of the driver. The model 
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results in terms of a binary confusion matrix and corresponding metrics are shown 

in Figure 37.  

 

Figure 37: Confusion matrix and corresponding metrics of interest for the model 

based on the traffic input from other vehicles in the small roundabouts. 

The model has an acceptable accuracy and precision, and could reliably identify 

the true negative values, producing a very low false positives rate. However, 

the number of false negatives is high and therefore the recall is relatively low. 

Using the speed as an additional input to the model, the results have been 

improved (Figure 38), but still the number of false negatives is relatively high.  

 

Figure 38: Confusion matrix and corresponding metrics of interest for the model 

based on the traffic input of other vehicles in the small roundabouts and additional 

input speed input of the TeamMate vehicle. 

This could be explained by the larger sample size for the true negatives (24021 

samples shown in Figure 37) compared to true positive values (11785 

samples, Figure 37). Training dataset has also similar proportion of the true 
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negatives compared to true positives and therefore the model has been trained 

with a relatively small sample sizes of true positives. Therefore, the recall 

metric could be further improved by using a larger dataset. 

The resulting structures for the big roundabouts are shown in Figure 23, 

section 3.3.3. In the first model for the big roundabouts where only traffic 

inputs were considered, the time headway of the behind vehicle in the 

roundabouts was chosen by the model as an important factor but not the 

distance variable. Compared to the structure of the small roundabouts, the 

distance of the front vehicle was chosen in this model while this variable was 

not chosen as important factor and instead the distance of the behind second 

vehicle in the roundabouts was chosen. Indicating that, the model of big 

roundabouts takes the traffic situation of the behind vehicles to account more 

than the model for the small roundabouts. The results for this model are shown 

in Figure 39.  

 

Figure 39: Confusion matrix and corresponding metrics of interest for the model 

based on the traffic input from other vehicles in the big roundabouts. 

This model has higher precision and recall than the model for small 

roundabouts. The number of true positive samples in test set is 17447 

samples, approximately half of the samples. Still the model has a relatively 

high false negatives and the model could be further improved. Including the 
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TeamMate speed as an additional input to the model improved the results for 

big roundabouts, as expected (Figure 40). 

 

Figure 40: Confusion matrix and corresponding metrics of interest for the model 

based on the traffic input from other vehicles in the big roundabouts and additional 

speed input of the TeamMate vehicle. 
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4.4 Driving Task Model Results 

The validation process of Driving Task Model is described hereafter, whose 

procedure is equal to the one of the second cycle. Here, we have added a 

results section. 

From a preliminary analysis, we can conclude that the basic model of task 

execution was the same for the participants in ULM and DLR. We conclude 

from this that DriveGOMS approach for collecting, organising and analysing 

data is a helpful, valid addition to the traditional tools available for Human 

Factors researchers. The model and the other insights from the study will aid 

the development and evaluation of enabler E6.1. 

Due to the limited space available here we will constrict the report on the 

results on the basic model that was derived from the scenario. We are planning 

on making the more detailed results known to a wider audience via 

publications. The model can be seen in Figure 41. It was exhibited by all 

subjects, both in the ULM and the DLR study.  

Two observations are important. First, subjects did have the opportunity to 

play the game of Solitaire the entire time if they wished to do so. All subjecs 

reported the scenery to be rather boring after a short while (latest towards the 

middle of the first block). Therefore, even if they did not like Solitaire too 

much, they all did interact with the tablet after a short while, for extended 

periods of time. This is exemplified by the goal “play”.  

Second, subjects did not need to observe the road or scenery actively, because 

of the warning sound that chimed when approaching the slower lead vehicle 

up to an “ACC” distance. However, all subjects chose to intermittently look up 

(goal “update situation representation”). When asked why after the study’s 

end, subjects reported that they “wanted to see what was going on” and 
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“wanted to see where the slower lead vehicle might be”. Latest during the 

second trial, they all did report to expect that lead vehicle, as well as being 

extremely annoyed by it.  

However, usually it did take some time, until the ego vehicle approached the 

slower lead vehicle. During this time, subjects would return their attention to 

the game, instead of keeping on tracking the lead vehicle. This is represented 

by “decide-wait”. They knew the vehicle was coming, but had to wait for the 

warning sound until they could act. Since there was nothing else left to do (a 

sentence uttered by all of the 12 participants regarding why they did return 

their attention to the game), they continued playing Solitaire. 

Next, after having been alarmed to the presence of the slower lead vehicle, 

participants started to look actively for oncoming traffic, and also gauged the 

distance of the visible road. Due to the winding and hill climbing nature of the 

road this could vary. The decision to eventually overtake could be modelled by 

a function of the distance of visible road, the guessed differential speed of the 

oncoming traffic, and the likelihood of the presence of oncoming traffic. There 

were situations where obviously all subjects chose to overtake: If the road was 

visible far ahead, with no sign of oncoming traffic. Otherwise, subjects did 

sometimes wait for oncoming traffic, and overtake directly after it had passed.  

Once the basic decision had been made to wait for a good opportunity to 

activate the overtaking maneuver (“wait-for-gap”), subjects never returned to 

playing. If the decision (“decide-overtaking”) for the “GO” was made, subjects 

would activate the left indicator, and then share their attention between 

observing the truck as they were passing it and possible oncoming traffic, while 

(at least early in the study) monitoring the system. When seeing the truck in 
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the center mirror, subjects would activate the indicator to the right, let the car 

center itself in the lane, and quickly go back to playing. 
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Figure 41: Basic model for the Peter scenario. 
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4.5 E3.1 – Situation and vehicle model  

4.5.1 Predicting the future evolution of the traffic scene  

Following the plans described in deliverable D2.5 “Metrics and Experiments for 

V&V of the driver, vehicle and situation models in the 3rd cycle”, validation of 

the prediction of the temporal and spatial evolution of the traffic scene was 

performed using a set of independent test data, representing ground truth 

time-series of traffic situations, using a variety of metrics, extending the 

formal requirements for the technical validation of E3.1 as stated in deliverable 

D1.5 “Definition of framework, scenarios and requirements incl. KPIs & 

Baseline for 3rd cycle”. A summary of relevant requirements is shown in Table 

7. 

Table 7: Requirements and metrics used for the technical validation of E3.1 

Requirement 
Metric Success criteria 

R_EN3_model1.3 and 

R_EN3_model1.4 

Correct rate of the 

prediction 

>90% 

 

4.5.1.1 Validation process 

To recapitalize and concretize the overall validation process and metrics used, 

let ����� denote the test data, composed by a number of � trials, where each 

trial �, � = 1, … , � is a time-series consisting of a number of ��, data samples ��
� =

����
� , … , ����

� � , � = 1, … , �� and a map �. For each sample ��
�, and each object � ∈
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�, we infer the most probable behaviour hypothesis ℎ��� ∈ {��, ��} and predict 

a sequence of future states � ���,�
����|ℎ����,� 

� � , � = 1, … , ����. 

Concerning the validation of the prediction of the evolution of the traffic 

situation, it is most important that the predicted regions encompass the true 

future location of the vehicle. As a metric to validate the performance, we 

therefore chose the concept of a “correct classification rate” as the ratio of 

correct predictions and the number of total predictions. Let 0 < � < 1 denote 

an arbitrary threshold, we can define a region that covers 100(1 − �)% of the 

probability density of a belief state � ���,�
�����|ℎ����,� 

� �. For each predicted state 

� ���,�
�����|ℎ����,� 

� � , � = 1, … , ����, we then check whether the true state ��,�
����� of 

object � ∈ � is located outside of this region. Denoting such an occurrence as 

a failure and resp. as a success otherwise, the correct classification rate ���
�  is 

defined as  

���
� =

#�

#� + #�
, 

representing the ratio of successes #� and the sum of successes #� and failures 

#� for a temporal prediction horizon �Δ and a specific level of � for assessing 

the quality of the prediction of the temporal and spatial evolution of the traffic 

scene. For the actual validation, we abstract from the predicted velocity, 

acceleration, and yaw-rate, which are not used for online risk assessment, and 

instead focus on the valid prediction of the location and pose 

� ���,�
�����, ��,�

�����, ��,�
�����|ℎ����,� 

� � and, for the sake of comparison, on the valid 

prediction of the location � ���,�
�����, ��,�

�����|ℎ����,� 
� � alone.  

The metric is used to assess the fulfilment of requirements R_EN3_model1.3 

and R_EN3_model1.4, stating that the “integrated model must predict possible 
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evolutions of the traffic situation in respect to potential interventions of the 

driver” (R_EN3_model1.3), resp. “[…] potential interventions of the 

automation” (R_EN3_model1.4) with a correct rate of the prediction above 

90% to be fulfilled. For a perfect prediction and a region that encloses 

100(1.0 − �)% of the probability mass, we would, in the perfect case, expect a 

failure-rate of 100�%. As such, we will treat the requirements as fulfilled, if the 

ratio of correct predictions is above 90(1.0 − �)% for each prediction horizon �Δ 

and level � independently. 

Newly introduced in deliverable D2.5 “Metrics and Experiments for V&V of the 

driver, vehicle and situation models in the 3rd cycle”, we planned to assess the 

volume of the prediction area as an supplementary measure for assessing the 

quality of the traffic prediction, with smaller volumes, which can be interpreted 

as more certain predictions, being preferred over bigger volumes. For this, we 

calculated the mean area �̅�
�  derived from an polygonal approximation (using 

a number of 100 vertices) of the belief state over the location 

� ���,�
�����, ��,�

�����|ℎ����,� 
� � for a prediction horizon � and a specific level of �. 

Finally, for an empirical approach for assessing the computational performance 

of the prediction of the evolution of the traffic situation, we measured the 

runtime performance for the prediction using a temporal step width Δ = 1� and 

a maximum number of prediction steps ���� = 10. 

4.5.1.2 Dataset for validation 

As the validation process requires the knowledge of ground truth, we opted to 

perform the validation on simulator data. To allow for an easier comparison 

with the evaluation results obtained during the second cycle, we reused the 
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same test set ����� as previously described and used in deliverable D2.4 

“Sensor Platform and Models incl. V&V results from 2nd cycle”. 

Due to the test set arising from a simulator study (a detailed description of the 

experiment is also provided in deliverable D2.4 “Sensor Platform and Models 

incl. V&V results from 2nd cycle”) in which the traffic flow was automatically 

controlled by a traffic simulation, the resulting behaviour of traffic participants 

in the vicinity of the TeamMate vehicle is highly predictable and potentially 

unrealistic, leading to overly optimistic results. For a more realistic assessment 

of humanly controlled traffic participants, we therefore primarily perform our 

validation for the humanly controlled “TeamMate” vehicle. 

As ����� provided ground-truth data, while the traffic prediction requires belief 

states with associated uncertainties, we needed to transform the ground-truth 

data into belief states. Let ��,�
� = ���,�

� , ��,�
� , ��,�

� , ��,�
� , ��,�

� , ��,�
� � denote the ground 

truth of the state of a vehicle � ∈ � in a sample ��
�, we use the following belief 

state as a simulated provision of the sensor and communication platform: 

����,�
� � = �

⎝

⎜
⎜
⎜
⎜
⎛

� =

⎝

⎜
⎜
⎜
⎜
⎛

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

⎠

⎟
⎟
⎟
⎟
⎞

, � =

⎝

⎜⎜
⎛

0.1
0.1

0.01
1.0

0.01
0.01⎠

⎟⎟
⎞

�

��

⎠

⎟
⎟
⎟
⎟
⎞

. 

4.5.2 Results: Prediction performance 

We performed the validation for five different levels of �, ��.� = 0.5, ��.�� = 0.25, 

��.� = 0.1, ��.�� = 0.05, and ��.�� = 0.01 using a temporal step width Δt = 1� and a 

maximum number of prediction steps ���� = 10. 
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As the primary result of the validation, Table 8 shows the correct classification 

rate ���
�  for the humanly controlled vehicle for the different temporal intervals 

� (corresponding to a temporal interval [� + (� − 1)�: � + ��]) and different levels 

of δ. Bold values indicate that the ratio is above the required 90(1.0 − �)%. We 

report both the results focusing on location and pose and focusing solely on 

location. To provide a more intuitive understanding of the results, we 

additionally report the average two-dimensional Euclidean distance (AED) 

between the ground truth and the mean of the predicted. 

Table 8: Ratio of successes #� and the sum of successes #� and failures #� for the 

prediction of the temporal and spatial evolution for human participants, for 

different prediction horizons � (in seconds) and different levels of �. Ratios limited 

to the location are shown in brackets, ��� denotes the average Euclidean distance 

between the true location and the mean of the prediction. Bold values denote that 

the result is above the required ��(�. � − �)%. 

i #� + #� ����.�

�  ����.��

�  ����.�

�  ����.��

�  ����.��

�  ��� 

1 405947 
0.920 

(0.978) 

0.945 

(0.996) 

0.959 

(0.999) 

0.966 

(1.000) 

0.979 

(1.000) 
0.110 

2 405627 
0.868 

(0.894) 

0.903 

(0.932) 

0.924 

(0.948) 

0.932 

(0.953) 

0.944 

(0.961) 
0.558 

3 405307 
0.827 

(0.824) 

0.875 

(0.886) 

0.900 

(0.915) 

0.911 

(0.926) 

0.925 

(0.937) 
1.239 

4 404987 
0.789 

(0.763) 

0.848 

(0.853) 

0.878 

(0.887) 

0.891 

(0.901) 

0.907 

(0.917) 
2.460 

5 404667 
0.759 

(0.714) 

0.827 

(0.823) 

0.861 

(0.866) 

0.875 

(0.882) 

0.892 

(0.901) 
3.779 

6 404347 
0.737 

(0.680) 

0.813 

(0.801) 

0.847 

(0.849) 

0.862 

(0.866) 

0.879 

(0.886) 
5.255 
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7 404027 
0.723 

(0.659) 

0.802 

(0.785) 

0.838 

(0.837) 

0.851 

(0.855) 

0.869 

(0.871) 
6.845 

8 403707 
0.712 

(0.646) 

0.793 

(0.773) 

0.829 

(0.827) 

0.842 

(0.844) 

0.860 

(0.864) 
8.527 

9 403387 
0.703 

(0.636) 

0.783 

(0.763) 

0.820 

(0.817) 

0.834 

(0.835) 

0.853 

(0.855) 
10.29 

10 403067 
0.695 

(0.628) 

0.775 

(0.754) 

0.812 

(0.807) 

0.827 

(0.826) 

0.846 

(0.848) 
12.12 

 

As indicated by bold values, the correct classification rate fulfils the 

requirement of ���
� > 90(1.0 − �)% up to ����Δt = 10� for ��.�, ��.��, and ��.� 

(however only up to ����Δt = 9� in the two-dimensional case). In contrast, ��.�� 

is fulfilled up to ����Δt = 7� and ��.�� is fulfilled up to ����Δt = 5�. As such, 

compared to the second cycle, we can report an increase of 3� for ��.�� and 1� 

for ��.��. 

As supplementary information, Table 9 shows the mean area �̅�
�  (in ��) of the 

belief state over the location for the humanly controlled vehicle for the different 

temporal intervals � (corresponding to a temporal interval [� + (� − 1)�: � + ��]) 

and different levels of δ. 

Table 9: Approximated mean area ���
�  of the belief state over the location, for 

different prediction horizons � (in seconds) and different levels of �, as the average 

of # measurements.  

i # ����.�

�
 ����.��

�
 �� ��.�

�
 ����.��

�
 ����.��

�
 

1 406267 1.521 3.042 5.052 6.573 10.10 

2 406267 3.296 6.593 10.95 14.25 21.90 

3 406267 5.507 11.02 18.30 23.80 36.59 

4 406267 8.090 16.18 26.87 34.96 53.75 

5 406267 11.02 22.04 36.62 47.64 73.23 
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6 406267 14.34 28.68 47.63 61.97 95.27 

7 406267 18.17 36.34 60.37 78.54 120.73 

8 406267 22.64 45.28 75.22 97.86 150.43 

9 406267 27.90 55.80 92.68 120.58 185.36 

10 406267 34.12 68.24 113.35 147.47 226.70 

 

For the sake of comparison with the results reported in deliverable D2.4 

“Sensor Platform and Models incl. V&V results from 2nd cycle”, Table 10 shows 

correct classification rate ���
�  and Table 11 shows the mean area �̅�

�  for the 

other traffic participants, controlled by the driving simulation.  

Table 10: Ratio of successes #� and the sum of successes #� and failures #� for 

automatically controlled traffic participants. 

i #� + #� ����.�

�  ����.��

�  ����.�

�  ����.��

�  ����.��

�  ��� 

1 974201 
0.986 

(0.992) 

0.988 

(0.994) 

0.990 

(0.995) 

0.991 

(0.995) 

0.994 

(0.995) 
0.130 

2 947320 
0.981 

(0.982) 

0.985 

(0.988) 

0.986 

(0.990) 

0.986 

(0.991) 

0.987 

(0.993) 
0.382 

3 920967 
0.976 

(0.974) 

0.981 

(0.983) 

0.983 

(0.986) 

0.984 

(0.988) 

0.985 

(0.989) 
0.681 

4 895101 
0.972 

(0.963) 

0.979 

(0.982) 

0.981 

(0.985) 

0.982 

(0.987) 

0.984 

(0.988) 
0.985 

5 869852 
0.967 

(0.955) 

0.978 

(0.981) 

0.980 

(0.985) 

0.982 

(0.987) 

0.983 

(0.989) 
1.289 

6 845085 
0.962 

(0.944) 

0.978 

(0.981) 

0.981 

(0.986) 

0.982 

(0.988) 

0.983 

(0.989) 
1.620 

7 820710 
0.959 

(0.941) 

0.977 

(0.981) 

0.981 

(0.987) 

0.982 

(0.989) 

0.983 

(0.990) 
1.989 

8 796983 
0.958 

(0.941) 

0.977 

(0.981) 

0.980 

(0.987) 

0.981 

(0.989) 

0.982 

(0.991) 
2.396 
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9 773711 
0.958 

(0.939) 

0.976 

(0.981) 

0.979 

(0.988) 

0.980 

(0.989) 

0.981 

(0.991) 
2.837 

10 750924 
0.956 

(0.936) 

0.975 

(0.981) 

0.978 

(0.987) 

0.979 

(0.989) 

0.980 

(0.990) 
3.295 

 

As apparent, the correct classification rate is for the most part above the 

corresponding level of �, therefore fulfilling the requirements of being above 

90(1.0 − �)%. 

Table 11: Approximated mean area ���
�  for automatically controlled traffic 

participants. 

i # ����.�

�
 �� ��.��

�
 �� ��.�

�
 ����.��

�
 �� ��.��

�
 

1 1001662 1.520 3.039 5.048 6.568 10.096 

2 1001662 3.301 6.602 10.97 14.27 21.93 

3 1001662 5.535 11.07 18.39 23.92 36.77 

4 1001662 8.166 16.33 27.13 35.29 54.25 

5 1001662 11.17 22.34 37.11 48.28 74.22 

6 1001662 14.58 29.16 48.43 63.01 96.87 

7 1001662 18.48 36.96 61.38 79.86 122.76 

8 1001662 22.95 45.90 76.23 99.18 152.47 

9 1001662 28.10 56.18 93.31 121.40 186.63 

10 1001662 34.02 68.04 113.02 147.04 226.03 

4.5.3 Results: Runtime performance 

For an empirical approach for measuring the computational complexity of the 

traffic prediction, we measured the runtime performance for the prediction of 

the spatial and temporal evolution of the traffic scene using a temporal step 

width Δ� = 1� and a maximal number of prediction steps ���� = 10. 
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Execution times were calculated as the average of 406000 example executions 

using an i7-6700 CPU @ 3.40GHz, 16GB desktop computer, running a 

Microsoft Windows 10 64-Bit operation system. The algorithms were compiled 

as 64-Bit applications using Visual Studio 2017 and we measured individual 

execution times in nanoseconds using the high_resolution_clock provided by 

the std::chrono library. 

To allow for a better extrapolation to the usually variable number of considered 

objects �� in the vicinity of the TeamMate vehicle, we limited the assessment 

to a single object by only measuring the prediction of the spatial and temporal 

evolution for the TeamMate itself. We note, that these results measure the 

execution time of the prediction in isolation, and do not include the necessary 

time for the interpretation of the sensor data or updating any graphical user 

interfaces.  

The resulting execution time averages on 1.390ms per considered object in 

the vicinity of the TeamMate vehicle. Extrapolating these results, this would 

allow for a prediction of the spatial and temporal evolution of �� = 7 traffic 

participants within the duration of approx. 10ms, which fits well into the 

intended frequency of execution of 10Hz. 

4.5.4 Privacy 

Finally, addressing privacy concerns, the algorithms for prediction of the 

spatial and temporal evolution of the traffic participants do not process or 

retrieve any personal data of the driver. 
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5 Conclusions and Outlook 

This document presented all the results related to the sensor platform and 

models including the verification and validation results of the activities from 

task 2.2 (T2.2) to task 2.5 (T2.5) from the 3rd cycle. 

During the first cycle initial models were developed, their performance were 

validated and limitations were collected. During second cycle the enablers 

were improved to extend the known limitations and be able to meet the 

requirements of the defined use cases. Then, these enhanced models were 

evaluated as well in different ways.  

Now, in the third cycle, the WP2 enablers have been improved: each related 

section of this document describes how (the implementation has been done) 

and how much (the performances are better). The results show that all the 

enablers are able to provide useful data for other components of the TeamMate 

car allowing for the unique feature set of it and are now ready to be integrated 

in the AutoMate project demonstrators (including both real vehicles and driving 

simulators). 

In the next steps the emphasis will be on integration, as we will describe in 

the final documents of WP5. 

 


