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1  Executive Summary  

This document describes the results of comparative evaluatio n conducted in 

driving simulators and also with real vehicles on test tracks of the third project 

cycle, to demonstrate the added values of the integrated enablers in the 

TeamMa te car. It consists of two parts (section 3 and section 4 ). The first part 

(sec tion 3) mainly introduces the updated of the individual enablers (E1.1 

ñDriver monitoring systemò, E1.2 ñV2X communicationò, E2.1 ñDriver intention 

recognitionò, E3.1 ñSituation and vehicle modelò, E4.1 ñPlanning and execution 

of safe manoeuvreò, E4.2 ñLearning of intention from the driverò, E5.1 ñOnline 

risk assessmentò, E6.1 ñInteraction modalityò, E6.2 ñTeamMate multimodal 

HMIò, E6.3 ñAugmented realityò). In section 3, there is a subsection for each 

mentioned enabler above that addresses the development within AutoMate 

and the improvements in comparison to state of the art, and the final status. 

The second part documents the results of comparative evaluations conducted 

in driving simulators and also with real vehicles in the section 4. For each 

demonstrat or, a TeamMate system setup with several integrated enablers was 

compared against a simulated baseline system for the AutoMate scenarios 

(PETER, EVA, MARTHA).  

Section 4.1 and section 4. 5 describe the evaluation study of TeamMate concept 

in the PETER scenar io on rural roads conducted in the driving simulator and 

with a real vehicle on test tracks. The baseline car was a state -of - the -art 

automated car. For the TeamMate car, all enablers mentioned above were 

integrated in the ULM driving simulator, whereas the  enablers of Planning and 

execution of safe manoeuvre, Interaction modality, TeamMate multimodal HMI 

(Cluster + audio) were integrated in the ULM vehicle. The evaluation results 

in the ULM simulator show a benefit of the TeamMate car compared to the 
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baseli ne car regarding efficiency, usage of automation, usability, workload and 

willingness to buy and pay. Besides, the performance of the integrated 

enablers in the TeamMate car was rated relatively high. The evaluation results 

in the ULM vehicle show that Tea mMate car doesnôt show the added value 

regarding trust, acceptance and safety compared to the baseline where a 

human driver carried out the overtaking maneuverer. The lateral control was 

neither pleasant nor accustomed nor predictable in the TeamMate cond ition 

and the test personôs skin conductance level increased over the time. However, 

the TeamMate car was rated higher than the baseline condition regarding 

usability and willingness to buy.  

Section 4.2 and section 4. 6 describe the evaluation study of Team Mate concept 

in the EVA roundabout scenario conducted in the driving simulator and with a 

real vehicle on test tracks. The baseline, an autonomous vehicle which follows 

the driverless approach, was compared against a TeamMate car. In the REL 

simulator, the  Team Mate system was integrated TeamMate HMI, interaction 

modality, Driver Monitoring System and learning of intention from the driver, 

whereas situation and vehicle model, planning and execution of safe 

manoeuvre , TeamMate HMI (Cluster + audio, Central st ack display, HUD) were 

integrated in the CRF vehicle. The evaluation results in the REL simulator show 

a benefit of the TeamMate car compared to the baseline car regarding trust, 

acceptance, workload and willingness to buy and pay. Besides, it also 

demonst rates the added value of TeamMate system  in terms of efficiency and 

safety.  

Section 4.3  and  section  4.4  describe the evaluation study of TeamMate concept 

in the MATHA roundabout conducted in the driving simulator and with a real 

vehicle on test tracks. The baseline, an au tonomous vehicle which follows the 

driverless approach, was compared against a TeamMate car. For the VED 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

< 30/09/2019 >  
Named Distribution Only  

Proj. No: 690705  
Page 16  of 

244  

 

simulator and VED vehicle, the evaluation results show no benefit of the 

TeamMate system regarding acceptance, trust and, usability compared to the 

baseline. However, participants prefer the TeamMate system and their 

willingness to buy is higher for the TeamMate system than the baseline 

system.  

For CRF vehicle, the TeamMate system show its benefit with regard to 

acceptance, willingness to buy and willingness to pay compared to the baseline 

car. However, the workload with the TeamMate system is higher than the 

baseline car . 
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2  Introduction  

This document describes the results of the evaluation studies of the integrated 

TeamMate system r un in cycle 3 of the project. Based on the results of the 
evaluation studies performed in the second cycle in the different 

demonstrators and the previously defined scenarios both the different enablers 
and the integrated TeamMate systems have been improve d and further 

developed. Based on these developments it was possible to integrate the 

enabling technologies of the TeamMate car not only in the driving simulators 
of the AutoMate project but also in three demonstrator vehicles to demonstrate 

and evaluate t he TeamMate car functionality in the three defined scenarios on 

real road in test - track studies.  

The basic principle of the TeamMate car concept is that driver and TeamMate 

car functionality work together as team players. This means that both the 
driver an d the automation support each other if necessary when performing 

driving manoeuvres. This creates basically two different cooperation situations 
that were coined in D6.2 as A2H support , when the automation supports the 

human driver and H2A support  when the  human driver supports the 

automation. In D1.3 and D1.5 different use cases and scenarios were defined 
that serve as critical test cases for the evaluation of this interplay between 

human driver and automation and that demonstrate the limits of currently 
available traditional vehicle automation approaches. These scenarios have 

been used to evaluate the TeamMate car concept in the evaluation studies 
reported in D6.2 and they were used again in the evaluation studies reported 

in this deliverable D6.3. The PET ER scenario exemplifies a scenario where the 
human driver can support the automation to solve a situation more efficiently 

than the automation could do as the automationôs environment perception is 
impaired. The EVA scenario represents a scenario where the  situation is too 

complex for the automation and the driver needs to be brought back into the 
loop to monitor the automation in handling the complex situation. The MARTHA 

scenario stands for those class of situations where the human driver has to be 
effici ently brought back into the loop to take back the control of the vehicle 

from the automation.  

The cooperative interaction of human driver and vehicle automation in these 

different scenarios was possible by integrating the identified required enabling 
techn ologies, such as Driver Monitoring System to check whether the driver is 

available in case the driver should take some or full control of the driving task, 
the Driver Intention Recognition to understand the human driverôs plans in 
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given traffic situations and to best support these planes, the Online Risk 

Assessment to be able to suggest and perform only safe manoeuvres and 
sophisticated interaction strategies (including HMI, AR and a concept of 

interaction modalities) that facilitate the driverôs understanding of the 
automation behaviour and its plans and to easily change the automationôs 

plans according to changing priorities and changing environmental conditions 

without lo sing the maximum possible support by the automation.  

This TeamMate car system was te sted in various instantiations adapted to the 

requirements of the different scenarios to optimize the project efficiency and 
to be able to address these many classes of situations under different 

conditions. In cycle 3 we carried out in total six evaluatio n studies, three in 

real vehicles demonstrating the systems principal feasibility and positive 
effects under realistic conditions and three evaluation experiments in high -end 

state -of - the art driving simulators that allowed the evaluation of the TeamMate 

car system under more complex and critical conditions.  

To adequately evaluate the TeamMate car system in the different scenarios 

with their different requirements the methodology described in D6.1 was 
applied. Specific baselines and KPIs have been used as d escribed D6.1 for each 

demonstrator in the different scenarios. This allowed us to evaluate the specific 
gain of the cooperative driver -vehicle interaction realized in the TeamMate 

care systems in terms of safety, efficiency, trust in automation and accept ance 

of the new technology in the different scenarios.  
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3  Update of Enablers in Cycle 3  

This section describes the updates of the individual enablers since the last 

cycle and also the final status of the enablers in the TeamMate car . 

3.1  Description of Enabler Updates  

 E1.1 Driver monitoring system with driver state model for 

distract ion and drowsiness  

This section presents a synthesis of the Driver Monitoring System (DMS) 

overall related work performed in Automate. It includes 3 main parts:  

¶ Work around the DMS integration in the demonstrators  

¶ Work for the improvement for the Drowsines s model  

¶ Work for the improvement of the driver attention model including the 

identification of the areas the driver is looking at.  

The Driver Monitoring System (DMS) is a monocular vision -based system 

observing the driverôs face which estimates the driver physiological and 

behavioural states including drowsiness and visual distraction (see Figure 1). 

The system detects, tracks the driverôs face and computes features as eye 

closure, eye/head gaze, head pose required to model the different driver 

states. DMS is fully automatic, works in real time by night and day conditions.  

The Automate Human Machine Interaction (HMI) module makes use of the 

state estimation to adapt the takeover strategies and warnings.  
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Figure 1 :  DMS graphical user interface  

 

DMS integration in vehicles and simulators  

Within the Automate project the DMS has been integrated in the following 

demonstrators:  

¶ VED real vehicle demonstrator (see Figure 2)  

¶ ULM simulator demonstrator  

¶ REL simulator demonstrator  

¶ CRF real v ehicle demonstrator  

The integration in the Automate demonstrators br ings  issues which requested 

some specific improvement/adaptation of the tooling, process, communication 

interfaces . For each demonstrator the following integration tasks have been 

done:  

Physical integration objective is to determine the best camera pose 

(position and orientation) in compliance with the vehicle integration 

constraints (camera occultation, intrusiveness, etc.)  It includes an analysis of 
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the DMS performances for different se lected camera pose for each 

demonstrator  

 

 

 

Figure 2 : DMS Camera integrated in the Vedecom car (left; blue overlay) and 

CRF car (right)  

DMS calibration aims to determine the camera pose in the vehicle 

coordinate system. This is  done using a set of targets and Continental tools. 

Within the Automate project the tools were improved to ease the calibration 

process and improve the camera calibration accuracy. The calibration process 

used within the integration in the Vedecom car is d escribed in detail in the 

deliverable 6.2.  

The DMS parameters/configuration are determined to optimize the DMS 

functionalities according to the camera pose and cockpit configuration. This 

task consists first in collecting recordings of a set of drivers per forming a 

specific protocol. During this protocol the drivers must look at different areas 

of the vehicle (Instrument cluster, mirrors, ahead, central display, etc.), move 

and incline their head, and perform some facial related actions (blinking, 

talking, etc.). The comparison of the DMS output on these videos are 

compared to the protocol ground truth in order to determine the best set of 
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parameters. It must be noted that the protocol was defined according to the 

Automate requirements.  

The communication int erface and protocol have been adapted to the 

software platform of the demonstrators. Validation tests have been performed 

jointly with the demonstrator technical team ensuring a high reliability.  

The graphical user interfaces (GUI) have been adapted to th e partners 

requirement providing understanding and visibility on the DMS functionalities.  

 

The drowsiness model  

The Continentalôs algorithm makes a direct estimation of the drowsiness 

mainly based on driver blinking behavior. This algorithm has good 

perfo rmances, however, there exists some limit cases, typically when the 

driver wears Infrared -blocking glasses, in this case the algorithm is unusable 

because the camera cannot see the driverôs eyes.  Within Automate 

Continental has been focusing the developme nt on improving the eyelid/eye 

opening based model by a drowsiness model based on non -eye features. In 

deliverable 2.4 we present the first concept based on head movements only. 

The work has been pursued by extending the model to all non -eye signals the 

DMS tracker provides; such as head  pose/activity related signals  and mouth 

related signals  

The algorithm principle of the non -eye drowsiness model makes use of a 

learning base approach based on Random Forest classifiers (RF) applied to a 

set of features ( Me an, Variance, Energy, etc.) computed over a defined time -

period ( 150s, 180s, 240s and 300 seconds) for each selected signal.  
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Evaluations have been done on labelled drowsiness recordings collected on 30 

subjects in a simulator.  

The results obtained withou t a preliminary phase of normalization have 

highlighted the necessity of a feature normalization.  

The Figure 3 below shows the recall results obtained on the 30 drivers after a 

phase of feature normalization on the first 10 minutes of highway driving 

wher e the driver is considered perfectly awake.  

 

Figure 3 : Drowsiness recall of 30 drivers  

 

It must be noted that only highly drowsy states and clearly non -drowsy states 
have been considered. States ranging from 4 to 7 in the KSS sc ale have been 

excluded.  
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At the end we can say that this algorithm works well to detect highly drowsy 

or clearly non -drowsy drivers, but it will be much more difficult for it when it 

comes to evaluate sequences where the drivers is between these 2 classes.  

 

Visual attention model and identification of the area the driver is 

looking at.  

The objectives of the work were to optimize the ñOff- road/On -roadò detection, 

adapt the visual attention model to the Human Machine Interface design and 

finally improve the i dentification of the area the driver is looking at.  

The works have been done mostly on the video database collected in static 

and driving conditions at the Satory test track with the Vedecom demonstrator 

car.  

The Figure 4 below shows for 2 drivers the valu es in degree of the pitch 

(vertical axis) and yaw (horizontal axis) angles computed by the DMS for the 

different areas the driver is looking at during the test protocol.  

As one can see the angles values can be significantly different for the same 

instrumen t which of course degrades the identification of the vehicle areas the 

driver is looking at. This issue calls for an eye gaze calibration which needs to 

be done automatically while driving without interfering with the driver.  

 

 

 

Driver 1  Driver 2  

Figur e 4 : AOI (Areas of Interest) for two drivers during the test protocol  

Within Automate we have developed a concept based on the 3 hypotheses:  
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¶ Statistically the driver looks much more in front than in other 

direction. This hypothesis  allows to calibrate the front (to the road) 

eye gaze.  

¶ The major number of extreme head yaws are because the driver 

looks at the left or right mirror. This hypothesis allows to calibrate 

the lateral mirrors eye gaze.  

¶ The offset angles applied to a calibra ted area (front, left mirror, 

right mirror) can also be applied to the areas nearby the calibrated 

one.  

We have developed this concept on simulation. We achieved better 

results for the calibrated areas: the detection of the road, left and right mirror 

are above 85% for all tested subjects. Still the performances for the other 

areas are much lower. This is mainly due to the eye gaze estimation noise and 

the non -optimal position of the camera.  

 

Intelligent Vehicles demonstrations  

The DMS integrated in the CR F demo car (Eva scenario) and Vedecom 

demo car (Martha scenario) has been successfully demonstrated during the 

track tests of the Intelligent Vehicles demonstration event at Satory.  

In both Eva and Martha scenario DMS is used to inform the HMI if the drive r 

is distracted or not.  

These demonstrations have shown the very good performances of the DMS for 

the different scenarios even in adverse light conditions (bright sunny day with 

direct sun light). The implemented strategy to trigger the distracted flag 

worked well activating the ñdistractionò flag with the appropriate timing and 

according to the driver distraction state. It must also be noted that during 

these tests no detection lack and no false detection have been observed. These 

demonstrations have also  proven the reliability of the integration for different 
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cockpit position and the reliability of the communication interfaces developed 

specifically for the CRF and Vedecom systems.  

 

  E1.2 V2X communication  

In this section, the V2X communication system rel ated developments and their 

final statuses are summarized.  

At the beginning of the project, off - the -shelf Cohda Wireless MK5 2 V2X 

communication devices were brought. These devices provide state of the art 

V2X communication features including the ETSI G5 pr otocol stack. During the 

project, several development and tests were carried out to utilize the 

capabilities of the equipment.  

First, a robust and flexible application were developed that is able to transmit 

custom messages between cars (i.e. on board unit s) or infrastructure (i.e. road 

side units). The concept of such application was born during the AutoNet2030 3 

project. The benefit of this feature is the possibility of rapid implementation of 

new kind of messages or the newer version of the existing ones.  Furthermore, 

the application is able to transform data streams between different transport 

layer protocols: IP/TCP, IP/UDP, GeoNetworking/BTP. Using the vehiclesô OBD 

connector, it can also capture the data stream from CAN bus.  

Besides that, tests were pe rformed to understand how the standardized 

Cooperative Awareness Message (CAM) and Decentralized Environmental 

                                    
2 https://cohdawireless.com/solutions/hardware/mk5 -obu/  

3 http://www.autonet2030.eu/  
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Message (DENM) can be produced. During laboratory tests, the compliance of 

the standards was  investigated. This is very important for the intero perability 

of different devices that implement the same standard.  

Secondly, the previously mentioned application was  improved to be able log 

and record the V2X communication (and also any other local communication 

if necessary). The recorded data streams can be replayed in real - time, 

therefore the number of field tests can be reduced.  

Furthermore, several field tests were carried out to record real data for 

relevant AutoMate scenarios, as well as to measure the capabilities of the MK5 

devices in real envir onment. It was found that the performance of these 

devices meets the expectations, i.e. they similarly perform as other state of 

the art equipment.  

Finally, based on the recording and replaying features, a visualization 

framework was developed to be able t o show what the V2X communication is 

capable of. The framework has web -based frontend that runs in any modern 

browser. The prototype version is deployed on a Raspberry PI 3. Its Wi -Fi 

works in AP mode, thus the communicated information can be followed by t he 

users easily using a smartphone or tablet. Of course, it is able to work with 

live data as well, which makes field testing more convenient.  

A V2X communication device has been deployed as road side unit in Satory 

test track at Vedecom that broadcasts ro ad works warning message for field 

testing.  
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  E2.1 Driver intention recognition  

This section summarizes the development and final status of E2.1, ñDriver 

intention recognitionò as previously described in the deliverables of WP2 [1, 2, 

3, 4, 5, 6]  and to be published in [7] .  

E2.1 provides the TeamMate car with knowledge about probable and desired 

current and future manoeuvre intentions of the driver. Such knowledge is 

required to develop a share d understanding between the driver and the 

automation.  When the driver is in control, such knowledge can be used to 

assess the safety of an intended maneuver prior to its execution and provide 

adequate information and warnings. If the automation is in cont rol, it can be 

used to select intention -compliant behavior of the automation or to detect and 

communicate mismatches between the driverôs intention and the TeamMate 

carôs behavior.  

To realize E2.1, we developed a conceptional model for intention and 

maneu ver recognition based on (conditional) Dynamic Bayesian Networks, 

whose structure and parameters can be estimated from annotated time -series 

of human driving behavior. The model represents the statistical and causal 

relations between the driverôs intentions, the performed driving maneuvers, 

and available sensor information about the traffic situation and vehicle state. 

The model then addresses the problem of intention and maneuver recognition 

from the available situational context, where the situational con text is given 

by a set of observable features, comprised and derived from the state of the 

TeamMate vehicle, including its position in the road, and the traffic situation, 

i.e., the state of other traffic participants. We treat the state of traffic 

partici pants as a set of observable inputs  or causes  for the formation of 

intentions and the state of the TeamMate vehicle as a set of observable outputs  
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or effects  resulting from the driving behavior. The model assumes that the 

intentions of the driver evolve ba sed on the situational input encountered. The 

intentions then manifest themselves in the execution of driving maneuvers 

whose effects can be observed. The model formalizes these assumptions in a 

conditional Dynamic Bayesian Network that is composed of a va riable set of 

sub -models, e.g., to model the probability distribution over intentions given 

the observable inputs. The detailed structure of these sub -models and the 

parameters of their probability distributions and density functions involved are 

estimated  from annotated experimental data. Parameter estimation is 

achieved via Bayesian parameter estimation, structure learning is achieved via 

a greedy hill -climbing search in a search space of model structure using a 

discriminative variant of the Bayesian Info rmation Criterion [7] .  

During runtime, the model can be used in two different settings, akin to 

intention and maneuver recognition  and intention prediction . If the driver is in 

control of the vehicle, both observable inputs and  outputs can be used to 

simultaneously perform intention and maneuver recognition by continuously 

inferring the joint belief state over the current intentions and maneuvers given 

all available inputs and outputs observed thus far. If the automation is in 

control, the model can be used for intention prediction by ignoring observable 

effects resulting from the automation, and continuously inferring a belief state 

over the intentions given the available situational input instead.  

Throughout AutoMate, we adapte d the conceptional model to three different 

scenarios using corresponding datasets: real -world motorway, simulated rural 

road, and simulated roundabout scenarios. In [6] , we reported on the 

development of models for rural road  and roundabout scenarios, as used for 

the Peter and Eva scenarios. For [7] , we further refined these models and 

developed an additional model for highway scenarios, as used for the Martha 
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scenario. The model for rural road sce narios has been integrated in the ULM 

simulator and VED real vehicle demonstrator, the model for roundabout 

scenarios has been integrated into the REL simulator demonstrator.  

The final version of D2.1 has been evaluated on unseen test data. 

Summarizing the  latest results [7] , the model for intention recognition on two -

lane motorways achieves an accuracy of 0.888, precision of 0.617, recall of 

0.831, F -score of 0.708, and a false positive rate (FPR) of 0.101. The model 

for intenti on recognition on rural roads achieves an accuracy of 0.952, 

precision of 0.838, recall of 0.844, F -score of 0.841, and a false positive rate 

of 0.029. Lastly, the model for predicting the intention of a driver to enter 

roundabouts achieves comparative res ults with an accuracy of 0.850, precision 

of 0.886, recall of 0.808, F -score of 0.845 and false positive rate of 0.107. To 

allow for a numerical comparison with other approaches for driver intention 

recognition on motorways reported in the literature [8, 9, 10] , we analysed 

the time span between the model for driver intention recognition on 

motorways consistently predicting a lane -change intention and the TeamMate 

carôs centre crossing the lane boundary. Evaluated on unseen test data, the 

model reaches an average prediction horizon of 6.08s. Discarding individual 

prediction times greater than 10s (the overall execution time of a lane change 

manoeuvre is usually assumed as approx. 10s [11] ) results in a more 

conservative prediction time of 5.57s. A similar analysis for intention 

recognition on rural roads shows that the model is able to predict a lane change 

intention 4.60s prior to the TeamMate car crossing the lane boundary (or 4.44 s 

when discarding values greater than 10s).  

E2.1 has been successfully integrated in the VED real vehicle, the ULM 

simulator, and the REL simulator demonstrator demonstrator to help enabling 

our vision of the TeamMate concept. For this, E2.1 has been imple mented 
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together with the functionality for the prediction of the spatial and temporal 

evolution of the traffic scene (E3.1), online risk assessment for dynamic 

objects (E5.1), and online learning (E4.2) into a single C++ Dynamically 

Linked Library . Within the second and third cycle, this DLL was embedded into 

functional plug - in modules for the simulation environment SILAB, used by the 

ULM simulator demonstrator, and the third -party software RTMaps, used by 

the VED real vehicle demonstrator, enabling the uti lization of these 

functionality in corresponding demonstrators. For the REL simulator, we used 

the TeamMate Extension SDK [12]  to compile E2.1 to an executable that 

connects to the REL simulator. The resulting VED real vehicle  demonstrator 

has been demonstrated during the final event. First and final versions of the 

ULM simulator demonstrator have been evaluated at the end of the second 

[13]  and third cycle (Section 4.1 ) , the final version of the REL simulator 

demonstrator has been evaluated at the end of the third cycle (Section 4.2 ).  

3.1.3.1  Comparison with the state of the art  

This section primarily summarizes [4]  and th e discussion and results to be 

published in [7] , to which we refer for more information. Driver intention 

recognition addresses the problem of anticipating driving manoeuvres, a driver 

is likely to perform in the near future. As  early knowledge about potentially 

dangerous manoeuvre intentions may serve as a potential enabler to generate 

adaptive warnings and early interventions, driver intention recognition is an 

increasingly important topic for the development of advanced driver  assistance 

systems and has become a popular research topic. Approaches reported in the 

literature (s ome comparative reviews are provided e.g. in [14]  and [15] ) 

mainly differ in respect to the selec ted scenarios and addressed manoeuvres, 

modelling techniques used, and the sensor input considered.  
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Concerning the sensor input, we distinguish between different kind of 

information, causes and effects. Here, causes should be understood as 

information perc eived by the driver that results in the formation of an 

intention, e.g., a slow lead vehicle in the case of overtaking intentions. In 

contrast, effects should be understood as the observable effects on the overall 

behaviour of the driver and vehicle, resul ting from the existence of an 

intention, e.g., head movements to check the blind spot or the initiation of an 

overtaking manoeuvre.  

Traditional driver intention recognition commonly focusses on modelling the 

relations between manoeuvre intentions and their  effect on the behaviour of 

vehicle and driver. Existing approaches commonly focus on information about 

the vehicle state, e.g. provided via the Controller Area Network (CAN) bus, 

and the location of the vehicle in the lane to recognize driving manoeuvres as 

early as possible [16, 17, 18, 19, 20, 21, 22] . An obvious limitation of such 

approaches is the necessity for a manoeuvre to be initialized before it can be 

recognized. I n order to overcome these limitations and extend the predictive 

capabilities, more sophisticated approaches consider the inclusion of driver -

based input obtained from camera systems, e.g., by tracking head and eye 

movements of the driver, to recognize char acteristic preparatory measures 

preceding the execution of a manoeuvre, e.g. shoulder checks  [14, 8, 23, 18, 

24] . Driver -based input provides valuable information, but their inclusion only 

shifts the recognition of manoeuvre intentions to earlier stages of execution 

and with the increasing introduction of automation to the vehicle, driver -based 

input for driver intention recognition may become misleading and, in the 

extreme case of fully auto nomous driving, obsolete.  

For the development of driver intention recognition in AutoMate, we primarily 

focussed on causes for intentions, given by the situational context, esp. the 
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traffic situation, i.e., information about vehicles in the vicinity of th e driver. Up 

to now, potentially due to limited sensor capabilities, such information has not 

been used thoroughly for intention recognition, but is either neglected entirely 

[25, 16, 21, 26, 27, 17, 18, 24] , or restricted to the immediate surrounding of 

the driver, namely the lead vehicle [28, 23, 22, 29, 19]  and vehicles in the 

blind spots [8, 9] . This is surprising, as where the inclusion of driver -based 

input only shifts the recognition of manoeuvres to earlier stages of the 

execution, information about the current traffic situation should be able to 

provide inf ormation suitable to actually predict  the intentions of the driver, 

e.g., a slow driving lead vehicle may be the reason why the driver may form 

the intention to overtake, while an acceptable gap may provide the reason why 

a driver intends to return to the original lane.  

Within AutoMate, we developed a model for driver intention recognition that 

refrains from driver -based input but instead explores the utilization of 

information about the traffic situation to extend the predictive capabilities of 

the model and enable the use in highly automated or autonomous driving.  

Models for driver intention recognition have been widely studied in context of 

different scenarios and modelling techniques [14, 15] . Many studies address 

lane change manoeuvre on motorways and rural roads [28, 25, 8, 9, 16, 23, 

21, 10]  or turning and stopping manoeuvres at intersections [26, 30, 27, 22, 

29] . In contrast, roundabout scenarios are relatively uncharted. Muffert [31]  

developed a method for the safe entrance to roundabouts using stereo 

cameras, however, [32]  proposed a model for recognizing driverôs intentions 

to exit or remain in a roundabout. In AutoMate, we developed a conceptional 

model that was adapted to three different scenarios: real -world highway, 

simulated rural road and simu lated roundabout scenarios.  
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Modelling techniques primarily include probabilistic generative  approaches like 

Dynamic Bayesian Network (including Hidden Markov Models and their 

variants) [26, 22, 17, 18, 19, 20] , supposed to be better suited for modelling 

temporal aspects [24] , or probabilistic and non -probabilistic discriminative  

approaches, including Support Vector Machines (SVMs) [28, 16, 30, 32] , Multi -

Layer Perceptrons [27] , or logistic regressions [15], which are better suited to 

include complex feature set, like e.g. head and eye tracking data, for which 

the definition  of a generative model may be complicated to define correctly 

[33] . In the context of decision -making, the problem of predicting driver 

manoeuvres based on the traffic situations is also addressed by gap 

acceptance models [34, 35] . Gap acceptance models assume the existence of 

a latent critical gap at which a driver is indifferent between accepting and 

rejecting a gap in traffic [34] . This gives rise to a gap acc eptance function 

describing the probability that a driver accepts an offered gap, usually realized 

as a logistic regression [34, 35] . Unfortunately, the limitation to logistic 

regressions can be overly restricted in mo re complex scenarios. In AutoMate, 

we tested both generative and discriminative approaches, and settled on 

conditional Dynamic Bayesian Networks composed of sub -networks, which can 

be interpreted as a combination of both generative and discriminative 

appro aches.  

One of the most sophisticated of such approaches for intention recognition on 

motorways  implemented in real vehicles up to date is the discriminative model 

described by [8]  and evaluated in [9 ] . They used Relevance Vector Machines 

as a probabilistic alternative to SVMs for learning a model for online recognition 

of lane change intentions based on information about the vehicle state, head -

tracking, the lead vehicle and vehicles in the blind sp ot. The resulting model 

can recognize lane change intentions of human drivers up to approx. three 
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seconds [8, 9]  prior to the actual crossing of the lane  (in the following denoted 

as prediction horizon ). Building on t hese results, [23]  proposed the use of 

discriminative Latent -Dynamic Conditional Random Fields and extended the 

driver -based input by hand and foot motion cues. They the state improved 

prediction horizons, but do not report act ual numbers. Just recently, [10]  

presented a model for recognizing and predicting lane changes, realized as a 

(non -dynamic) Bayesian Network that incorporates both driver -based input 

and the traffic situation, with the traffic situation being condensed into three 

discrete levels of occupancy for each lane. They report a vastly improved 

average prediction horizon of 7.8s at a recall of 0.7. Our model for intention 

recognition on motorways achieves an average prediction horizon of  6.08s (or 

5.57s when discarding individual prediction times greater than 10s) at a recall 

of approx. 0.8. This exceeds the performance of [8, 9]  but falls short of the 

results presented by [10] , showing the potential benefit of driver -based input, 

if available. For rural roads our model is able to predict a lane change intention 

4.60s prior to the TeamMate car crossing the lane boundary (or 4.44s when 

discarding values greater than 10s).  

3.1.3.2  Pre - existing developments  

As previously described in [6] , for the development of the models for driver 

intention recognition in AutoMate, we started with a pre -existing framework, 

consisting of libraries and algorithms for the creation and utilization of 

(Dynamic) Bayesian Networks, originally developed during the former EU 

project HoliDes. Within AutoMate, this framework was significantly updated 

and extended, e.g., to allow for the learning and utilization of more complex 

mode l structures and parametric distributions, enabling the update of model 
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parameters during runtime (as required by E4.2 ñLearning of intention from 

the driverò), and enabling the use in rural road and roundabout scenarios.  

To start the model development du ring the first cycle of AutoMate,  prior to the 

conduction of any data collection experiments, we made use of experimental 

data obtained during the former EU project HoliDes. This data represented 

real -world recorded in a CRF prototype vehicle with human dr ivers manually 

performing overtaking vehicles. The data has been used for the development 

of libraries and tools for the development and evaluation of models for driver 

intention recognition until explicit experimental data for the development of 

model for  driver intention recognition on rural roads became available.  

3.1.3.3  Facing the cold start problem  

In regard to driver intention recognition in AutoMate, the cold start problem 

can be understood as the problem of recognizing and predicting the intentions 

of an i ndividual driver during the introduction period of the system, when 

insufficient information about the specific driver is available. The term ñcold 

start problemò originated in the context of recommender systems, where it 

refers to the problem of performin g inferences for a user or item before the 

necessary information for such inferences have been gathered [36] . 

As a mitigation strategy to face the cold start problem for driver intention 

recognition in AutoMate, we rely on the utilization of a prior or default model, 

representing the average or a group of drivers that can then be adapted to the 

individual driver, once such data is available. In AutoMate, this default model 

is given by E2.1 ñDriver intention recognitionò. Utilizing E4.2 ñLearning of 

intention from the driverò, this default model can then be adapted to the 

individual driver in an online fashion (c.f. Section 3.1.6 ).  
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As described in the deliverables of WP2 [1, 2, 3, 4, 5, 6] , enabler E2.1 ñDriver 

Intention Recognitionò is realized in terms of probabilistic models whose 

parameters are structures have been learnt offline, using datasets obtained in 

simulator studie s, as conducted by OFF, ULM, and HMT during the second and 

third cycle. To start the model development during the first cycle of AutoMate,  

prior to the conduction of any data collection experiments, we made use of 

experimental data obtained during the form er EU project HoliDes (c.f. Section 

3.1.3.2 ). The experiments and datasets to train the models have been 

described in deliverables D2.4, Section 4.3 [4] , D2.5, Section 3.1.2.3 [5] , and 

D2.6, Section 4.3.1.2 [6] . The experiments have been designed to favor 

multiple participants with comparable few iterations over the contrary. The 

resulting models represent groups of drivers or the average dri ver, hopefully 

being reasonable applicable, although not perfectly adapted, to a broad 

spectrum of potential individuals.  

3.1.3.4  Driver profiles  

To some extent, E2.1, after being adapted by E4.2, can be interpreted as a 

user model  or driver profile  to infer usefu l information about an associated 

driver, in this specific case limited to the potential driving intentions given the 

current traffic situation. This raises the question of whether and how it would 

be possible to extend the capabilities of the user model t o additional 

information of interest, e.g. lateral/longitudinal driver preferences or whether 

the driver prefers risk averse or friendly driving behavior. We note that driver 

profiles were not planned to be addressed in AutoMate and would require 

substanti al effort in profile, privacy, and security management beyond the 

scope of AutoMate. That said. we belief that the models for driver intention 

recognition, adapted to the individual driver using E4.2, could be extended to 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

< 30/09/2019 >  
Named Distribution Only  

Proj. No: 690705  
Page 38  of 

244  

 

or embedded in driver profiles in future research. As described in the 

deliverables of WP2 [1, 2, 3, 4, 5, 6]  and [7] , the models for driver intention 

recognition basically encode a c onditional probability / density distribution over 

the temporary evolution of a set of latent states of the driver, e.g. intentions 

and currently performed maneuvers, and observable effects of the driving 

behavior, e.g. speed and control signals, given the  observable vehicle state 

and traffic situation. A natural first step for the extension into driver profiles 

would be the addition of the distribution over the observable vehicle state and 

traffic situation to obtain the joint distribution over all variabl es. If modelled 

correctly, the resulting joint distribution could then readily be used for driver 

intention recognition and to infer additional queries of interest, e.g., velocity 

preferences in different situational contexts, while relying on the same 

alg orithmic foundation already in place. Due to the use of embedded Bayesian 

classifiers [6, 7] , information necessary for the realization of such driver 

profiles is already partially encoded in the models for driver int ention 

recognition. However, due to the use of discriminative machine - learning 

techniques for feature selection that focused on maximizing the performance 

of intention recognition, potentially valuable information for the realization of 

driver profiles may  not be included.  

We note however, that the Dynamic Bayesian Networks used for driver 

intention recognition exploit knowledge about temporal dependencies that 

may not be necessary for the realization of driver profiles. Simpler non -

dynamic Bayesian Network s may be sufficient for modelling driver profiles, 

resulting int easier to learn, more efficient, and potentially more robust 

models. Nonetheless, such simpler models could easily be utilized in 

conjunction with the models for driver intention recognition,  utilizing the same 

algorithms for parameter and structure learning, performing inferences, and 
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online adaptation. The AutoMate partner OFF currently investigates the 

modelling of driver profiles in the BMWI project ñAutoAkzeptò4 [37] .  

  E3.1 Situation and vehicle model  

The fin al status of Enabler 3.1 ñVehicle and Situation Modelò within WP2 [1]  

[2]  [3]  [4]  [5]  [6]  is summarized in this section. Representing the state and 

semantic information about a scene is the desired capability in autonomous 

driving systems. Therefore the situation model is an intermediate layer 

between the sensor and communication pl atform updating the state 

information for the driver models and vehicle model. Based on the sensor 

information, TeamMate vehicleôs current belief about the world is represented, 

and at constant interval the situation model is update via the sensor and 

comm unication platform.  

Within the scope of AutoMate project the development of the enabler 3.1 is 

focused by considering two features; Semantic enrichment of the situation 

model , which extends inputs from perception layer with semantic information 

and the pr ediction of the future evolution of the traffic scene  based on the 

enriched and current state of the situation -  and driver model.  

3.1.4.1  Semantic Enrichment of the situation model  

The semantic enrichment model extends the inputs of the perception layer 

with sem antic information from the scene model. Semantic information such 

as legal drivable maneuvers is inferred, on the basis of the modeled 

                                    
4 AutoAkzept ï Erhöhung der Akzeptanz automatisierten und vernetzen 

Fahrens. https://www.dlr.de/ts/desktopdefault.aspx/tabid -

10704/20365_read -54052/ , last visited 24.09.2019.  

https://www.dlr.de/ts/desktopdefault.aspx/tabid-10704/20365_read-54052/
https://www.dlr.de/ts/desktopdefault.aspx/tabid-10704/20365_read-54052/
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relationship between the agents and the scene elements and the set of traffic 

rules. In [2]  we proposed extended ontology with logical rules. An ontology is 

a semantic model allowing to express the domain knowledge, the modeled 

ontology is used to reason about the complex relations and facts. For this work 

to model the relations between scene el ements a Web Ontology Language 

(OWL) was used, and a Sematic Web Rule Language (SWRL)  was used to 

extend the modeled ontology with traffic rules. With amalgamating the two, 

OWL and SWRL we successfully model the complete domain knowledge to infer 

possible maneuvers for vehicles in the given scene. Figure 5 provides the 

overview of sample ontology taxonomy describing the spatial, temporal and 

semantic relations between scene objects. As a matter of visualization a 

sample taxonomy tree is presented here. In [2]  we define the classes for 

modeling the relations between the scene elements  

  

 

Figure 5 : Illustration of ontology taxonomy (left) and the relations legend 

(right). For more detail please view it i n colour version.  

 illustrates the sample set of traffic rule that are based on the relations and 

concepts of the ontology taxonomy to build the complete domain knowledge. 

With the help of the reasoner the allowed manoeuvre for each of the vehicle 
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in the scene can be inferred, the inferred manoeuvre could be used as a prior 

for predicting the traffic evolution.     

Name  Rule  Meaning  

R1 ίὸέὴίͅὭὫὲȩί ͮ άὥὲὩόὺὩὶȩά  ͮ 
ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩίȟȩά  O  ίὸέὴȩά  

Stop sign allows stop 

maneuver  

R2 ὫὭὺὩύͅὥῴίὭὫὲȩί ͮ άὥὲὩόὺὩὶȩά  ͮ 
ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩίȟȩά  O  ίὰέύᾨέύὲȩά  

Give way sign allows slow 

maneuver  

R3 ὸὶὥὪὪὭὧᾲὭὫὬὸȩὰ ͮ ὬὥίͅὸᾲίὸὥὸὩȩὰȟȩί ͮ ὶὩᾨὰὭὫὬὸȩί ͮ 
ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩὰȟȩά  O  ίὸέὴȩά  

Red traffic light allows 

stop maneuver  

R4 ὸὶὥὪὪὭὧᾲὭὫὬὸȩὰ ͮ ὶέὥὨȩὶ ͮ ὶέὥᾨίὭὫὲȩί ͮ 
ὸὶὥὪὪὭὧὰὭὫὬὸͅὥίίὭὫὲὩᾨὸέͅίὸὶὩὩὸȩὰȟȩὶ ͮ 
ίὭὫὲᾥίίὭὫὲὩὨὸͅέͅίὸὶὩὩὸȩίȟȩὶ ͮ 

ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩίȟȩά  ͮ ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩὰȟȩάς 
ᴼ ίὸὶὩὩὸᾴὥὲὩόὺὩὶȩὶȟȩάς 

Traffic lights has high 

priority comparing  to 

traffic signs, if both are 

assigned to the same road  

R5 ὶέὥὨȩὶ ͮ ὶέὥᾨίὭὫὲȩί ͮ  
ίὭὫὲᾥίίὭὫὲὩὨὸͅέͅίὸὶὩὩὸȩίȟȩὶ ͮ 

ὲέͅὸὶὥὪὪὭὧὰὭὫὬὸͅὥίίὭὫὲὩὨὸͅέͅίὸὶὩὩὸȩὶȟὸὶόὩ ͮ 
ίὭὫὲὥὰᾴὥὲὩόὺὩὶȩίȟȩά  O  ίὸὶὩὩὸᾴὥὲὩόὺὩὶȩὶȟȩά  

maneuver allowed on that 

road depend on the 

assigned traffic sign 

where there is no traffic 

light  

R6 άέὦὭὰὩέͅὦὮὩὧὸȩέ ͮ ὶέὥὨȩὶ ͮ 
ίὸὶὩὩὸᾴὥὲὩόὺὩὶȩὶȟȩά  ͮ Ὥίͅέὲȩέȟȩὶ  

ᴼ ὥὰὰέύὩὨᾴὥὲὩόὺὩὶȩέȟȩά  

Traffic participants 

allowed maneuvers 

depend on the road 

theyôre are on 

R7 ὶέὥὨȩὶ ͮ ὶέὥᾨὺὩὬὭὧὰὩȩέ ͮ Ὥίͅέὲȩέȟȩὶ ͮ  
ὬὥίͅάὥῲίὴὩὩὨὺͅὥὰόὩȩὶȟȩὺ 
ᴼ ὬὥίͅάὥῲίὴὩὩὨὺͅὥὰόὩȩέȟȩὺ 

Vehicles allowed maximal 

velocity depend on the 

road they are on  

Table 1  Basic traffic rules expressed with the help of SWRL  

The semantic enrichment module was successfully integrate d in the vedecom 

demo vehicle and was demonstrated at Satory during the end demo event.  

For packaging the model to facilitate seamless integration, we had developed 

JNIOWLBridge in C++ as presented in [4] . The JNIOWLBridge  all ows to access 

the OWL ontology and the reasoner as a C++ function within our semantic 

enrichment module. The JNIOWLBridge  is the bridge between the Java 

OWL/reasoner API and C++ module. Furthermore, in the 3 rd  cycle we shipped 

our semantic enrichment modul e as a C++ Dynamic Linking Library (Dll) to 

wrap it as a plugin within RTmaps environment of vedecom vehicle, allowing 

us to have a seamless integration. A communication module to communicate 
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between the perception layer and our semantic enrichment module was also 

integrated within the vedecom vehicle environment as a Dll [6] . Figure 6 shows 

the semantically enriched information about permissible driving manoeuvres 

inferred using the reasoner from the semantic enrichment module . The module 

was developed within the scope of the AutoMate, and no feature of the 

component is being inherited from external projects.  

Evaluation of this module was performed on synthesized data and tests data; 

to quantify the measure of accuracy we use the F1 score as a metric. We 

generated synthetic scenes to account for a large variance in scene 

appearance and to perform robust evaluation. Due to the fact that our model 

is a formal model, we obtained 100% accuracy on synthesized data. As we 

have a core  dependency of the perception output. On real data, the accuracy 

of the model could drop with respect to uncertainties within the outputs of the 

perception system [6] . We noticed the module performs at 82.95 ms and 

requires 60 0 MB for inference on a system with Intel - i7 -CPU, 8 cores@2,8 GHz 

and 8 GB RAM. The car -pc in vedecomôs real vehicle has the close specification, 

therefore we see the close performance in the test vehicle. The runtime is 

proportional to the complexity of t he scene.  
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Figure 6 : Inferred semantic information about permissible manoeuvres for 

vehicles based on the modelled domain knowledge from semantic enrichment 

module. The Ego -car (TeamMate) inferred dynamic maneuver is to ñdriveò and 

direction maneuver is to ñdrive-aheadò based on the semantic information of 

the scene. The coded colours represent the semantic meaning about inferred 

maneuvers (Legend). View it in colour to have better intuition.  

 Comparison of the state of the art  

I n [38]  the author proposes a Markov Logical Network  (MLN) framework for 

situation interpretation and rules mining to infer real -world events under 

uncertainty and ambiguous sensor information. Similar approaches as 

proposed in [38]  are greatly used for visual surveillance applications, where 

the aggregation of complex scene information does not necessarily require 

updates as in autonomous driving task.   

As the authors in [ 39]  [40]  [41]  [42]  present, ontologies  are greatly used for 

formal representation of the domain knowledge. At times modelling of these 

ontologies could get complex whe n considering large space of domain 
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information, and also remain laborious as they are designed  manually from 

experts. In [40]  the author reports an inference time of up to 1.17s for a single 

frame at a complex intersection for  reasoning about the scene. It is far from 

real time inference requirements, although the author in  [40]  argues, for less -

complex scenes 500ms would be enough in real time. Nevertheless , we require 

at least 100ms for real time d riving scenarios.  

 To overcome the complexities and the high inference time issues , we restrict 

our domain knowledge to traffic rules. Moreover , limiting to traffic rules remain 

enough to predicted manoeuvres for TeamMate vehicle and its surrounding 

vehic les, which provides as prior to predict evolution of traffic. The author in 

[41]  has a similar ontology for an automated vehicleôs context model. 

Following the similar proposed method to design our knowledge base, we 

greatly re duce the inference time to be within the bounds of 100ms, which is 

more suitable for automated driving task. Nevertheless , our approach has a 

limitation towards the consistency check of the inputs from the perception 

model, th ese limitations are going to be considered in our future works.  

3.1.4.2  Prediction of evolution traffic scene  

Long - term prediction of traffic participants is crucial for the development of 

advanced driver a ssistance systems and advancement of autonomous driving 

on public roads [43] , e.g., existing trajectory planning components already 

require prediction horizons of up to ten seconds [44] . To achieve a long - term 

prediction, the TeamMate car makes use of the traffic prediction component , 

a probabilistic model, comprising situation and vehicle models, to predict the 

likely temporal and spatial evolution of the TeamMate car and all traffic 

participants ob served in its vicinity. The traffic prediction has been developed 

for two - lane rural road and motorway scenarios, where it provides a long - term 
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prediction, with user -defined horizon and step size, with integrated recognition 

of lane -keeping  and lane -changi ng  behaviors for better prediction accuracy 

[6] .  

The traffic prediction is characterized by the following key aspects: Traffic 

prediction is performed at constant intervals for the TeamMate car and each 

dynamic object detected  in its vicinity. Once started, the state of each object 

considered is predicted for equidistant points in the future, up to a user -defined 

maximum prediction horizon. The state of each object is represented by a six -

dimensional Gaussian belief state over its location (in a two -dimensional global 

coordinate system), its yaw angle, velocity, acceleration, and yaw -rate. For 

predicting the state of an object into the future, the constant yaw -rate and 

acceleration (CYRA) motion model is used. The CYRA motion mo del is a 

physical motion model that describes the non - linear dynamics of location, yaw 

angle, and velocity (of a point mass) under the eponymous assumption of 

constant yaw -rate and acceleration in a set of motion equations [45] . As the 

assumption of constant yaw -rate and acceleration is insufficient for long - term 

prediction, a set of simple driver models, selecting appropriate yaw -rates and 

accelerations to perform specific manoeuvres based on a map of the 

environment, is used t o enable context -specific alterations of the yaw -rate and 

acceleration during the prediction. Inference -wise, the prediction is achieved 

by unscented transformation, as used in unscented Kalman filters [46] . For 

this, the six -dimensional belief state is condensed into a set of characteristic 

sigma points, which are then passed through the equations of the CYRA motion 

model. The resulting transformed sigma points are then used to derive a new 

six -dimensional belief state, represe nting an approximation of the result when 

passing the original belief state through a non - linear function.  
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Given these components, the traffic prediction operates as follows (c.f. Figu re 

7Figure 7): The traffic prediction maintains a Gaussian belief state for the 

TeamMate car and each dynamic object in its vicinity, which is constantly 

updated whenever new sensor information is provided. At constant intervals 

and for each object considered, the CYRA motion model and the set of driver  

models is used to perform a short - term prediction for each considered 

maneuver hypothesis. At the next time step, the new sensor observations are 

incorporated into the short - term predictions to obtain the likelihoods for each 

maneuver. The most probable m aneuver is then used for a long - term 

prediction. The result is a long - term prediction for the most probable 

maneuver for each dynamic object in the traffic scene, represented as a set of 

multivariate Gaussian distributions over the location, yaw angle, vel ocity, 

acceleration, and yaw -rate for the desired user -defined discrete time steps in 

the future. The long - term prediction is then used by E5.1 to perform online 

risk assessment for the TeamMate car (c.f. Section 3.1.7 ).  

 

Figu re 7 : Schematic probabilistic model for traffic prediction (a). Overview 

of functionality (b).  
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Evaluated on test data obtained in simulator studies throughout AutoMate, the 

final version of the traffic prediction achieves a correct  rate of prediction above 

90% for prediction horizons up to five seconds for vehicles controlled by 

human drivers while requiring an average execution time of 0.139ms per 

predicted object and second on an i7 -6700 CPU @ 3.40GHz, 16GB Ram 

desktop computer ru nning a Microsoft Windows 10 64 -Bit operation system 

[6] .  

Throughout the second and third cycle of AutoMate, the traffic prediction has 

been successfully integrated in the VED real vehicle and the ULM simulator 

demonstrator t o help enabling our vision of the TeamMate concept. For this, 

the traffic prediction has been implemented together with the functionality for 

online risk assessment for dynamic objects (E5.1), the driver intention 

recognition (E2.1), and online learning (E 4.2) into a single C++ Dynamically 

Linked Library. The DLL was then embedded into functional plug - in modules 

for the simulation environment SILAB, used by the ULM simulator 

demonstrator, and the third -party software RTMaps, used by the VED real 

vehicle dem onstrator, enabling the utilization of all functionalities in the 

corresponding demonstrators. The resulting VED real vehicle demonstrator has 

been demonstrated during the final event, first and final versions of the ULM 

simulator demonstrator have been ev aluated at the end of the second [13]  

and third cycle (Section 4.1 )  

 Comparison with the state of the art  

Traffic prediction must deal with uncertainties, arising e.g. from the inability 

to perfectly  observe the current traffic situation, the hidden intentions of the 

traffic participants, and variability in how these intentions may be executed 

[47] . Approaches for traffic prediction can be broadly categorized as short -
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term  prediction, long - term prediction, and abstract forms of situation 

prediction [47] . Short -  and long - term prediction attempt to directly predict the 

evolution of vehicle states on different time scales, while abstract forms 

summ arize the evolution in terms of manoeuvre or intention recognition (c.f. 

Section 3.1.3 ) or risk assessments (c.f. Section 3.1.7 ). As a general enabler 

for other technologies like risk assessment or tr ajectory planning, traffic 

prediction in AutoMate belongs to the former categories.  

Short - term prediction relies on motion or vehicle models to predict the short -

term motion of a vehicle in which the influence of driver and environment are 

minor and the pr ediction depends only on the driving physics and system 

dynamics [47] . The general topic of vehicle dynamics is well studied and 

understood (e.g. [48] ) and numerous motion models with different degr ees of 

complexity have been proposed for this task [45] : At the lower end of 

complexity lie linear motion models, assuming a vehicle to travel on a straight 

path with constant velocity  or constant acceleration . Having linear st ate 

transition equations, they allow for a direct utilization in Kalman - filters. 

Curvilinear models such as the constant yaw -rate and velocity  or the constant 

yaw -rate and acceleration  (CYRA) motion models also incorporate rotation but 

deny any correlation  between velocity and yaw -rate. This assumption is 

relaxed by the constant steering angle and velocity  and the constant curvature 

and acceleration  motion models. The latter motion models share many 

similarities with the kinematic bicycle model [49]  [50] , representing the lower 

end of complexity for the variety of vehicle  models . Like motion models, 

vehicle models with many different degrees of complexity have been proposed. 

Unfortunately, the informa tion necessary for their utilization (e.g., individual 

tire slip) are not observable by exteroceptive sensors, such that their use is 

limited to predicting the motion of the ego (TeamMate) vehicle. Schubert et 
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al. [45]  performe d a comparison of many of these models for the task of 

vehicle tracking and found the CYRA motion model to be the most effective 

trade -off in terms of precision and efficiency. The CYRA motion model was also 

successfully used by [51]  and [52] . Based on these findings, we decided to 

use the CYRA motion model within our traffic prediction.  

Independent of the vehicle model utilized, the assumption of constant inputs 

is only reasonable for prediction hor izons of less than a second [15] . For long -

term prediction with prediction horizon above a second, the constraints on the 

possible trajectory of vehicles imposed by the road network and likely 

maneuvers and maneuver intentions have to be considered [53] .  

Constraints imposed by the road network are usually either incorporated 

implicitly using lane -based coordinate systems or explicitly by the use driver 

models. Many approaches operate on a lane -based reference of Frenet frame, 

where the x -axis is given by a mathematical function like the course of the 

road or a planned reference trajectory [20]  [47]  [43]  [54]  [55] . Working in 

such a transformed system greatly simplifies the problem of incorporating road 

network constraints in that a simple linear model in the transformed space will 

perfectly follow the road in the Cartesian space. Unfortunately, lane -based 

representations may not be possible or require complicated treatment for more 

complicated road networks [54]  (e.g., parking lots, intersections, 

roundabouts). Furthermore, a transf ormation into Cartesian space, if required 

from other components along the processing chain, may be complicated and 

computational expensive. In contrast, our approach directly works in Cartesian 

space, using more complicated drive models.  

[30]  and [56]  used a combination of Support Vector Machines and Bayesian 

Filtering for intention recognition and Rapidly exploring Random Trees for 
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trajectory prediction. [57]  and esp. [20]  used Hidden Markov Models for 

intention recognition and Gaussian Processes for trajectory prediction. They 

used the recent positions of traffic participants to estimate a Gaussian Process 

over trajectory, which could then be used to predict the (non - linear) trajectory 

without the need of dedicated driver models. The use of Gaussian Processes 

seems very promising but is (for now) limited by the prohibiting computational 

complexity.  

[43]  proposed a prediction based on particle filters, Monte -Carlo simulations, 

and a microscopic driver model called the Intelligent Driver Model (IDM) to 

predict the future longitudinal car - following behavior. More specifically, each 

traffic participant is modelled by an IDM model, whose parameters are 

maintained in a particle filter guided by the observable driving behavior. A 

Monte -Carlo simulation is then used to predict the future motion using the 

parameters of the IDM model provided by the particle filter. Equivale nt to our 

approach, the prediction is performed for discrete steps in the future. Unlike 

our approach, but characterizing for sampling approaches, the resulting 

prediction is only implicitly represented by the different particles. For actual 

use, the parti cles must be approximated by some probability distributions, e.g. 

a (multivariate) Gaussian distribution. Our method directly works in a Gaussian 

space and requires less computational power.  

Our approach was inspired by [58] , p roposing the use of four -dimensional 

Gaussian state space within a Kalman filter and control signals provided by 

path - following driver models. We extended this approach by the use of the 

CYRA motion model and unscented transformation (i.e. unscented Kalman  

filters) and additional lane changing driver models. Within the timeframe of 

AutoMate, [59]  developed a very similar system, using a similar combination 

of multivariate Gaussian belief states, unscented transformation, CYRA 
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mo tion, and driver models for simultaneous manoeuvre recognition and 

trajectory prediction. They however focused on turning behaviour at 

intersections instead of overtaking in rural road scenarios. For future 

development, it should be possible to combine bot h approaches to extend the 

set of scenarios and manoeuvres considered.  

 Pre-existing developments  

Conceptualization, development, and implementation of the algorithm pipeline 

for the traffic prediction has been realized exclusively within the context of 

Aut oMate. No part of the enabler has been inherited from previous projects 

nor addressed in any other European projects.  

  E4.1 Planning and execution of safe manoeuvre   

In Automate it is intended to drive in structured environments such as rural 

roads or high ways (see the Automate Demonstration scenarios). Therefore , in 

the following there are two popular state -of - the art trajectory planning 

algorithms presented.  

The first one is an approach based on polynomial sampling [1]. Therein the 

center line of each lane  which can e.g. be stored in a digital map has to be 

known. In the first step the ego vehicle is getting transformed from Cartesian 

coordinates (e.g. UTM) into the Frenét coordinates of the one center line 

dedicated to the lane the vehicle is supposed to d rive on. In Frenét coordinates 

the vehicles position is described by the longitudinal distance from the 

beginning of the line and the lateral deviation from it. Each polynomial now 

describes the vehicles reference pointôs (e.g. the gravity center) position along 

and lateral to the center line over time. Each longitudinal and lateral trajectory 

is described by a quintic polynomial. In order to be able to specify values for 
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each coefficient, 6 conditions for each polynomial are required. The initial 

vehicle s tate already contains 3 of them (position, velocity acceleration). To 

be able to also obtain the remaining coefficients, terminal states for a specific 

terminal time are sampled as well (for further details have a look at [1]). Each 

longitudinal trajectory  can then be combined with each lateral trajectory and 

the ñbestò one in terms of predefined costs that is also collisions free and 

kinematic feasible is selected to be forwarded to the vehicle controller.  

Another approach is the one presented in [2]. Ther ein a driving corridor 

consisting of two - lane  boundaries is used to mark the area in which the vehicle 

is supposed to stay in. Then a continuous optimization problem is stated to 

obtain an optimal solution that guides the vehicle central to the corridor by  

approaching the target speed. To make the drive more comfortable to the 

vehicle passengers, accelerations as well as the uncomfortable jerk (derivative 

of the acceleration) are getting penalized by using appropriate cost terms. To 

avoid collisions with ot her vehicles, the ego vehicle is approximated by circles 

and foreign vehicles by trapezoids. Subsequently according hard constraints 

are introduced to make sure the circles do not collide with these trapezoids. 

Furthermore, only trajectories that fulfill t he kinematic constraints are 

considered as valid. The mightiness of this approach can e.g. be seen in [5]. 

Therein the equipment of the autonomous driving S -class ñBerthaò is 

described. The applied trajectory planning concept is the one in [2]. Bertha 

comp leted the historic route of 103km from Mannheim to Pforzheim 

completely autonomously.  

Within the Automate project a new trajectory planner based on the concept in 

[2] was developed. One major difference is that  the cost functional was 

modified in a way to be able to explicitly consider information in concerns to 

social compliant behavior [3 ]. Therefore , reference trajectories which are 
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calculated using appropriate driver models e.g. the ñintelligent driver modelò 

[4] are integrated in the first step. The nature of this reference trajectory   

allows it to incorporate this reference into the already mentioned cost 

functional of the optimization problem. Since the reference itself may not 

directly be forwarded to the  vehicle controller, smoothing terms to penalize 

the acceleration and jerk are added as in [2]. The resulting solution aims to 

guide the vehicle along the road while approaching the target speed. The 

resulting behavior is social compliant in a way that e.g . necessary safety 

distances to other vehicles are held.  

 E4.2 Learning of intention from the driver  

This section shall give a summary of the development and the final status of 

E4.2 ñLearning of intention from driverò as previously described in the 

deliver ables of WP3 [60, 61, 62, 63, 64, 65] . 

The Learning of intention from driver relies on the Driver Intention Recognition 

(DIR ) mode l from WP2. The initial DIR model is trained offline with data from 

multiple different drivers and therefore represents the average driver. Enabler 

E4.2 personalizes the initial DIR model by adapting the model parameters 

during driving. For a warning -based  system which tries do recognize driver 

intentions during manual driving this might reduce the number of false alarms 

for the individual driver. During automated driving, where the model could be 

utilized as a basis for manoeuvre decisions, it could lead t o a more pleasant 

driving behaviour. In both cases a personalized model could increase the 

acceptance of and the trust in the system. Therefore, it is desirable that 

cooperative automated vehicles are able to adapt their automation strategies 

to the driver ôs preferences to guarantee a human expert- like driving 

behaviour.  
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The DIR model is based on (conditional) Dynamic Bayesian Networks (DBN). 

The nodes of DBNs can represent different types of probability distributions. 

The enabler E4.2 is able to personaliz e the initial DIR model for the individual 

driver by updating the parameters of probability distributions of the model 

while driving. The currently implemented online learning algorithms provide 

update methods for the parameters of discrete, multivariate G aussian and 

Mixture of Gaussian distributions while the structure of the DBN stays 

unchanged. The update methods rely on Bayesian parameter learning and the 

usage of hyper -parameters which describe probability distributions over the 

model parameters. The h yper -parameters are updated as new evidence 

becomes available through observations, d etails were provided in [65] , [63] , 

and [61] . Since the update methods work in a supervised manner they require 

complete data samples. Thus, in order to be able to apply the algorithms 

during driving, an automated sample generation and labelling methods are 

necessary. The automated sample generation which was implemented for 

AutoMate r elies on forward -backward inference, also known as smoothing, and 

employs the DIR to create labels for variable sequences of observed data 

points. Details on this process can be found in [65] .  

As described in [65]  the smoothing based sample generation can be quite 

computational expensive depending on the complexity of the used model and 

the amount of data points, which have to be processed during the backward 

inference. In the worst case this lead s to delays in the simulation environment 

or the dropping of data points. To avoid this, the enabler was extended by the 

option to perform the backward inference in a separate thread.  

Additionally,  a specific interpreter class was introduced that can be app lied, 

for example, during the cooperative parts of the Peter scenario. In this case 

the driver has the opportunity to directly communicate the lane change 
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intention via the HMI to the automation. Furthermore,  the exact duration of 

the manoeuvre is known, si nce it is executed by the automation. Thus, by 

defining specific labelling rules the smoothing is not absolutely necessary for 

this case and the computational effort for can be reduced. However, 

implementing the specific interpreter requires some knowledge  about the used 

DIR, e.g., names and values of the variables that shall be affected by the rules, 

while the smoothing based labelling requires usually no further knowledge of 

the internals of the DIR.  

Since non - lane change data samples are predominant in t he training data, as 

reported in [6] , it can be expected that also during driving the amount of lane 

change sample is much lower than the amount of non - lane change samples. 

To reduce the imbalance in the samples and to somewha t increase the 

influence of the few samples that can be gathered for the individual driver 

during the experiments compared to the amount of data that was used to train 

the initial DIR model an oversampling functionality was implemented. The 

oversampling cr eates additional virtual samples for lane changes close to the 

actual samples during the experiments. This is achieved by multiplying the 

actual observed samples of the lane change manoeuvres with samples from a 

narrow Gaussian.  

As mentioned in [65]  this enabler was compiled into a C++ Dynamically Linked 

Library.  For integration into the ULM simulator, this library is wrapped in a 

SiLab DPU. For the integration into the VED demonstrator the library is 

wrapped into a RTmaps pack age.  

For the possibility to visualize the change from the initial DIR model to the 

current updated one during driving an additional stand -alone application was 

implemented. The application can receive the current model parameters from 
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the aforementioned Si lab DPU or RTmaps package via a socket connection and 

visualize every supported distribution available in the DIR model.  

The distribution that shall be visualized can be selected via the ñDistributionò 

cascading dropdown menu. The Application will draw the  initial distribution 

together with the current distribution as shown in Figure 8. The current 

distribution graph is updated whenever a new message with updated model 

parameters is received via the aforementioned socket connection. The 

connection parameter s can be configured via the ñOptionsò menu. The 

communication is described in more detail in deliverable D5.7.  

 

Figure 8 : Distribution Visualization application for enabler E4.2  
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3.1.6.1  Comparison with the state of the art  

Personalization  of driver model with the application of online learning in the 

automotive domain is still some recent development. However, none of the 

approaches so far utilizes DBNs. In [66]  the authors give an overview about 

some state -of - the -art  approaches to the personalization of ADAS or driving 

style for automated vehicles. The approaches cover the following fields of 

personalization:  

¶ ACC systems  

¶ forward collision warning and brake assistance  

¶ lane keeping  

¶ cooperative assistance  

¶ automa ted driving  

¶ lane change  

The personalization for ACC systems covers approaches where the driver is 

assigned to a certain driving style group and the ACC provides the appropriate 

control strategy, as well as approaches where the ACC attempts to mimic the 

dri ving style of the individual driver. The ACC approaches concentrate on gap 

preferences, acceleration profiles, and car following models.  

The approaches for collision warnings as well as those for lane keeping provide 

warning thresholds for individual drive rs.  

Personalization for cooperative assistance mainly covers selective assistance 

functions or modalities dependent on direct requests or situations.  

For the case of automated driving, the presented approaches either aim at 

learning individual driving styl es for highway driving or general trajectory 
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planning by imitating the driver, or their intention is to determine the individual 

driver prefers a defensive or a rather assertive driving style.  

More related to the applications of AutoMate is the personaliza tion for lane 

changes. In [66]  only the work of [67]  is presented. In this approach GMMs 

trained via EM are used to model lane -change and car following behaviour. In 

order to make the model respon sive to individual drivers and behaviour 

changes the EM training is started again whenever a sufficient amount of new 

samples is available. Since the retraining consumes many resources the GMMs 

are retrained on a certain batch of recent data. In contrast t o our approach 

the model only represents the recent driving behaviour and ignores older 

experiences.  

A fuzzy Case -Based Reasoning and Situation -Operator modelling based 

approach to individualize and learn situation recognition for lane -changes is 

shown in [68] . The initially offline learned models are already individualized 

for a single driver and are then trained further online during a simulator 

experiment. However, the case base might grow over time leading to an 

increased ti me to check for known cases.  

Another system for personalized lane change assistance is presented in [69] . 

In a highway scenario lane changes to the left and the right as well as lane 

keeping are modelled and predicted with HMMs . Starting form a general model, 

incremental batch learning for HMMs including several EM iterations on each 

new data batch is employed to implement a personalization for individual 

drivers. The approach should work while driving but the learning and 

evalu ation is so far only performed with offline data. The automatic data 

labelling of this approach relies on the detection of an actual lane change and 

driver data to detect certain head movements of the driver. The author shows 
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that the personalized models o utperform the initial general model. In contrast 

to that, our approach does not require driver data.  

A further topic for personalization and online learning in the automotive 

domain is the manoeuvre prediction at intersections. In [70]  a manoeuvre 

forecast for other road users at intersections based on a Bernoulli -Gaussian 

Mixture Model is described. An update of the model is realized by means of 

sequential EM. In contrast to our approach, updating of the model while driv ing 

and an online sample generation are not covered.  

Additionally in [71]  the authors present an approach to individualize the 

prediction of stop, turn or straight manoeuvres at intersections for the current 

driver. Online Ran dom Forest is used to learn from automatically labelled real 

driving data. This approach employs also an automatic data labelling but only 

for a fixed number of samples.  

3.1.6.2  Pre - existing developments  

As mentioned in [65] , the deve lopment of this enabler for AutoMate could start 

with a pre -existing framework, consisting of libraries and algorithms for the 

creation and utilization of (Dynamic) Bayesian Networks. This framework was 

originally developed by OFF during the former EU proj ect HoliDes 5. For 

AutoMate many updates and extensions were implemented. With respect to 

E4.2 these are:  

¶ the general ability to store model parameters in a way that they can be 

updated during runtime, e.g., as sufficient statistics  

                                    
5 www.holides.eu  
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¶ update methods for diffe rent distribution types used by the DIR  

(discrete, Gaussian, and Mixture of Gaussian)  

¶ methods for online sample generation  

 E5.1 Online risk assessment  

This section summarizes the development and final status of E5.1, ñOnline risk 

assessmentò as previously described in the deliverables of WP3 [60, 61, 62, 

63, 64, 65] . 

In the context of intelligent driving systems, the purpose of risk assessment is 

commonly associated with an earl y detection of situations that ñmay be 

dangerous for the driver, i.e. may result in harm or injuryò [15] . This requires 

a concept to quantify and formalize the safety of the current and near - future 

traffic situation according t o a metric of risk. The spatial and temporal region 

surrounding the TeamMate car in which there is no risk or acceptable levels of 

risk can intuitively be understood as safety corridors . The TeamMate car may 

occupy any point in the safety corridor without endangering the passenger or 

other vehicles. Once formalized in an appropriate form, safety corridors can 

be used by the TeamMate car to assess and plan safe and feasible trajectories, 

leading to a set of algorithms that allow identifying safe and reasonab le 

arrangements of the driving process.   

For AutoMate, the enabler E5.1 ñOnline risk assessmentò has been developed 

to provide the TeamMate car with such safety corridors. Online risk 

assessment was divided into two independent parts that have been realize d 

by different partners and shall be described in separate subsections: online 

risk assessment with respect to  dynamic objects,  like other traffic participants 
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in the vicinity of the TeamMate car, and online risk assessment with respect 

to static objects , like obstacles and road boundaries.  

3.1.7.1  Dynamic Objects  

Online risk assessment for dynamic objects has been developed to formalize 

and quantify the safety of the current and near - future traffic situation 

according to a metric of risk into safety corridors.  

As a metric of risk, we decided upon the probability of collision , i.e. the 

probability that the TeamMate car collides with another dynamic object. 

Following this idea, we developed a concept of safety corridors as geometric 

interpretations of the area in whi ch the probability of the TeamMate car 

colliding with another object for a specific temporal interval is bounded by a 

user -defined threshold as a set of polygons.  

Online risk assessment for dynamic objects requires knowledge about the 

probable current and  future states of all dynamic objects observed in the 

vicinity of the TeamMate car, which we refer to as the prediction of the spatial 

and temporal evolution of the traffic scene (Figure 9a) . In AutoMate, this 

prediction is provided in terms of probability  density functions over the state 

of each dynamic object for future points in time by the traffic prediction (E3.1, 

c.f. Section 1.1.1.1 ).  Given such a prediction, the predicted location and pose 

of vehicles at consecutive point s in time are combined into polygons enclosing 

probable locations of vehicles for resulting temporal interval. Together the 

polygons implicitly define a safety corridor in which the TeamMate car may 

maneuver with a bounded risk of collision (Figure 9b). On ce constructed, 

safety corridors can be used by the TeamMate car to plan safe trajectories, 

assess the safety of a trajectory planned by the automation, or assess the 

safety of a trajectory predicted for the human driver prior to its execution. The 
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geometr ic interpretation of safety corridors allows for a quick assessment of 

potential trajectories as safe or critical, by checking whether the trajectory 

would force the TeamMate car to leave the safety corridor in a specific 

temporal interval (Figure 9c).  

 

Figure 9 : Visualization of safety corridors, a geometric interpretation of the 

area in which the probability of the TeamMate car colliding with another 

object for a specific temporal interval is bounded  as and  the use of safety 

cor ridors for trajectory assessment.  

Evaluated on test data obtained in simulator studies throughout AutoMate, the 

final version of online risk assessment for dynamic objects achieves a correct 

rate of classification above 90% for prediction horizons up to 6 seconds [65] . 






























































































































































































































































































































































