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1 Executive Summary

This document describes the results of comparative evaluatio n conducted in

driving simulators and also with real vehicles on test tracks of the third project

cycle, to demonstrate the added values of the integrated enablers in the

TeamMa te car. It consists of two parts (section 3 and section 4 ). The first part

(section 3) mainly introduces the updated of the individual enablers (E1.1

ADriver monitoring systemo, E1.2 AV2X communi C
recognitiono, E3.1 ASituation and vehicle mode

of safe manoeuvrmrend , nged.f2 imiheanti on from the dr

ri sk assessmento, E6.1 Alnteraction modalityc
HMI 6, E6.3 fAAugmented realityo). I n section 3
mentioned enabler above that addresses the development within AutoMate

and the improvements in comparison to state of the art, and the final status.
The second part documents the results of comparative evaluations conducted
in driving simulators and also with real vehicles in the section 4. For each
demonstrat or, a TeamMate system setup with several integrated enablers was
compared against a simulated baseline system for the AutoMate scenarios
(PETER, EVA, MARTHA).

Section4.1 and section4. 5 describe the evaluation study of TeamMate concept

in the PETER scenar io on rural roads conducted in the driving simulator and

with a real vehicle on test tracks. The baseline car was a state -of -the -art
automated car. For the TeamMate car, all enablers mentioned above were
integrated in the ULM driving simulator, whereas the enablers of Planning and
execution of safe manoeuvre, Interaction modality, TeamMate multimodal HMI

(Cluster + audio) were integrated in the ULM vehicle. The evaluation results

in the ULM simulator show a benefit of the TeamMate car compared to the
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baseli ne car regarding efficiency, usage of automation, usability, workload and

willingness to buy and pay. Besides, the performance of the integrated

enablers in the TeamMate car was rated relatively high. The evaluation results

in the ULM vehicle show that Tea mMate <car doesnot show the

regarding trust, acceptance and safety compared to the baseline where a

human driver carried out the overtaking maneuverer. The lateral control was

neither pleasant nor accustomed nor predictable in the TeamMate cond ition

and the test personés skin conductance | evel
the TeamMate car was rated higher than the baseline condition regarding

usability and willingness to buy.

Section4.2 and section4. 6 describe the evaluation study of Team Mate concept
in the EVA roundabout scenario conducted in the driving simulator and with a

real vehicle on test tracks. The baseline, an autonomous vehicle which follows

the driverless approach, was compared against a TeamMate car. In the REL
simulator, the  Team Mate system was integrated TeamMate HMI, interaction
modality, Driver Monitoring System and learning of intention from the driver,

whereas situation and vehicle model, planning and execution of safe
manoeuvre , TeamMate HMI (Cluster + audio, Central st ack display, HUD) were
integrated in the CRF vehicle. The evaluation results in the REL simulator show

a benefit of the TeamMate car compared to the baseline car regarding trust,
acceptance, workload and willingness to buy and pay. Besides, it also
demonst rates the added value of TeamMate system in terms of efficiency and

safety.

Section4.3 and section 4.4 describe the evaluation study of TeamMate concept
in the MATHA roundabout conducted in the driving simulator and with a real
vehicle on test tracks. The baseline, an au tonomous vehicle which follows the

driverless approach, was compared against a TeamMate car. For the VED
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simulator and VED vehicle, the evaluation results show no benefit of the
TeamMate system regarding acceptance, trust and, usability compared to the
baseline. However, participants prefer the TeamMate system and their
willingness to buy is higher for the TeamMate system than the baseline

system.

For CRF vehicle, the TeamMate system show its benefit with regard to
acceptance, willingness to buy and willingness to pay compared to the baseline
car. However, the workload with the TeamMate system is higher than the

baseline car .
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2 Introduction

This document describes the results of the evaluation studies of the integrated
TeamMate system r un in cycle 3 of the project. Based on the results of the
evaluation studies performed in the second cycle in the different
demonstrators and the previously defined scenarios both the different enablers

and the integrated TeamMate systems have been improve d and further
developed. Based on these developments it was possible to integrate the
enabling technologies of the TeamMate car not only in the driving simulators

of the AutoMate project but also in three demonstrator vehicles to demonstrate

and evaluatet he TeamMate car functionality in the three defined scenarios on

real road in test -track studies.

The basic principle of the TeamMate car concept is that driver and TeamMate

car functionality work together as team players. This means that both the

driver an d the automation support each other if necessary when performing
driving manoeuvres. This creates basically two different cooperation situations

that were coined in D6.2 as A2H support , when the automation supports the
human driver and H2A support when the human driver supports the
automation. In D1.3 and D1.5 different use cases and scenarios were defined

that serve as critical test cases for the evaluation of this interplay between
human driver and automation and that demonstrate the limits of currently
available traditional vehicle automation approaches. These scenarios have
been used to evaluate the TeamMate car concept in the evaluation studies
reported in D6.2 and they were used again in the evaluation studies reported

in this deliverable D6.3. The PET ER scenario exemplifies a scenario where the
human driver can support the automation to solve a situation more efficiently
than the automation could do as the automati o
impaired. The EVA scenario represents a scenario where the situation is too
complex for the automation and the driver needs to be brought back into the

loop to monitor the automation in handling the complex situation. The MARTHA
scenario stands for those class of situations where the human driver has to be

effici ently brought back into the loop to take back the control of the vehicle

from the automation.

The cooperative interaction of human driver and vehicle automation in these

different scenarios was possible by integrating the identified required enabling

techn ologies, such as Driver Monitoring System to check whether the driver is

available in case the driver should take some or full control of the driving task,

the Driver l ntention Recognition to understar
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without lo sing the maximum possible support by the automation.

This TeamMate car system was te

requirements of the different scenarios to optimize the project efficiency and

to be able to address these many classes of situations under different
conditions. In cycle 3 we carried out in total six evaluatio
real vehicles demonstrating the systems principal feasibility and positive

6’—\
g "\

and to best support these planes, the Online Risk
Assessment to be able to suggest and perform only safe manoeuvres and
sophisticated interaction strategies (including HMI, AR and a concept of
modal i ti es)

f acind oftthet e

and

sted in various instantiations adapted to the

n studies, three in

effects under realistic conditions and three evaluation experiments in high

state - of-the art driving simulators that allowed the evaluation of the TeamMate

car system under more complex and critical conditions.

To adequately evaluate the TeamMate car system in the different scenarios

with their different requirements the methodology described in D6.1 was
escribed D6.1 for each
demonstrator in the different scenarios. This allowed us to evaluate the specific

applied. Specific baselines and KPIs have been used as d

gain of the cooperative driver

-vehicle interaction realized in the TeamMate

-end

care systems in terms of safety, efficiency, trustin automation and accept ance
of the new technology in the different scenarios.
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3 Update of Enablers in Cycle 3

This section describes the updates of the individual enablers since the last

cycle and also the final status of the enablers in the TeamMate car
3.1 Description of Enabler Updates

3.1.1E1.1 Driver monitoring system with driver state model for

distract ion and drowsiness

This section presents a synthesis of the Driver Monitoring System (DMS)
overall related work performed in Automate. It includes 3 main parts:

1 Work around the DMS integration in the demonstrators
1 Work for the improvement for the Drowsines s model

1 Work for the improvement of the driver attention model including the
identification of the areas the driver is looking at.

The Driver Monitoring System (DMS) is a monocular vision -based system
observing the driverods face wphysiolbgicaeantd i mat es
behavioural states including drowsiness and visual distraction (see Figure 1).

The system detect s, tracks the driveroés face
closure, eye/head gaze, head pose required to model the different driver

states. DMS s fully automatic, works in real time by night and day conditions.

The Automate Human Machine Interaction (HMI) module makes use of the

state estimation to adapt the takeover strategies and warnings.
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Driver State Sensor

Figure 1: DMS graphical user interface

DMS integration in vehicles and simulators

Within the Automate project the DMS has been integrated in the following

demonstrators:
VED real vehicle demonstrator (see Figure 2)
ULM simulator demonstrator

REL simulator demonstrator

= = =4 =2

CRF real v ehicle demonstrator

AutoMate Automation as accepted and trusted TeamMate to enhance €

i

The integration in the Automate demonstrators br ings issues which requested

some specific improvement/adaptation of the tooling, process, communication
interfaces . For each demonstrator the following integration tasks have been
done:

Physical integration objective is to determine the best camera pose
(position and orientation) in compliance with the vehicle integration

constraints (camera occultation, intrusiveness, etc.) Itincludes an analysis of
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the DMS performances for different se lected camera pose for each

demonstrator

Figure 2:DMS Camera integrated in the Vedecom car (left; blue overlay) and
CREF car (right)
DMS calibration aims to determine the camera pose in the vehicle
coordinate system. This is done using a set of targets and Continental tools.
Within the Automate project the tools were improved to ease the calibration

process and improve the camera calibration accuracy. The calibration process

used within the integration in the Vedecom car is d escribed in detail in the

deliverable 6.2.

The DMS parameters/configuration are determined to optimize the DMS

functionalities according to the camera pose and cockpit configuration. This

task consists first in collecting recordings of a set of drivers per forming a

specific protocol. During this protocol the drivers must look at different areas

of the vehicle (Instrument cluster, mirrors, ahead, central display, etc.), move
and incline their head, and perform some facial related actions (blinking,
talking, etc.). The comparison of the DMS output on these videos are

compared to the protocol ground truth in order to determine the best set of
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parameters. It must be noted that the protocol was defined according to the

Automate requirements.

The communication int erface and protocol have been adapted to the
software platform of the demonstrators. Validation tests have been performed

jointly with the demonstrator technical team ensuring a high reliability.

The graphical user interfaces (GUI) have been adapted to th e partners

requirement providing understanding and visibility on the DMS functionalities.

The drowsiness model

The Continental 6s algorithm makes a direct
mainly based on driver blinking behavior. This algorithm has good
perfo rmances, however, there exists some limit cases, typically when the
driver wears Infrared  -blocking glasses, in this case the algorithm is unusable
because t he camer a cannot see t he driver o6s
Continental has been focusing the developme nt on improving the eyelid/eye
opening based model by a drowsiness model based on non -eye features. In
deliverable 2.4 we present the first concept based on head movements only.
The work has been pursued by extending the model to all non -eye signals the
DMS tracker provides; such as head pose/activity related signals and mouth

related signals

The algorithm principle of the non -eye drowsiness model makes use of a
learning base approach based on Random Forest classifiers (RF) applied to a
set of features (Me  an, Variance, Energy, etc.) computed over a defined time -

period ( 150s, 180s, 240s and 300 seconds) for each selected signal.
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Evaluations have been done on labelled drowsiness recordings co

subjects in a simulator.
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llected on 30

The results obtained withou t a preliminary phase of normalization have

highlighted the necessity of a feature normalization.

The Figure 3 below shows the recall results obtained on the 30 dri

vers after a

phase of feature normalization on the first 10 minutes of highway driving

wher e the driver is considered perfectly awake.

Recall of the Classifiers
1.0 4 N/‘ ~—
_> ~ A N
2 v X ; /"‘:T / VA
\" -
0.8 - / \ \. \/\
0.6
=
O
o
0.4 -
024 150 sec
— 180 sec
—— 240 sec
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O'O E T T T T T T T
0 5 10 15 20 25 30
fterations

Figure 3: Drowsiness recall of 30 drivers

It must be noted that only highly drowsy states and clearly non
have been considered. States ranging from 4 to 7 in the KSS sc
excluded.

-drowsy states
ale have been
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At the end we can say that this algorithm works well to detect highly drowsy
or clearly non -drowsy drivers, but it will be much more difficult for it when it
comes to evaluate sequences where the drivers is between these 2 classes.

Visual attention model and identification of the area the driver is
looking at.

The objectives of the wor k -roee/Ore-rtom dop tdiemhiezcd i tof
adapt the visual attention model to the Human Machine Interface design and
finally improve the i  dentification of the area the driver is looking at.

The works have been done mostly on the video database collected in static
and driving conditions at the Satory test track with the Vedecom demonstrator
car.

The Figure 4 below shows for 2 drivers the valu es in degree of the pitch
(vertical axis) and yaw (horizontal axis) angles computed by the DMS for the
different areas the driver is looking at during the test protocol.

As one can see the angles values can be significantly different for the same
instrumen t which of course degrades the identification of the vehicle areas the
driver is looking at. This issue calls for an eye gaze calibration which needs to

be done automatically while driving without interfering with the driver.

Driver 1 Driver 2

Figur e 4: AOI (Areas of Interest) for two drivers during the test protocol

Within Automate we have developed a concept based on the 3 hypotheses:

< 30/09/2019 > Named Distribution Only

P 24 of
Proj. No: 690705 age ©

244




—

g o\

AutoMate Automation as accepted and trusted TeamMate to enhance 5T
AL

traffic safety and efficiency

1 Statistically the driver looks much more in front than in other
direction. This hypothesis  allows to calibrate the front (to the road)
eye gaze.

1 The major number of extreme head yaws are because the driver
looks at the left or right mirror. This hypothesis allows to calibrate
the lateral mirrors eye gaze.

1 The offset angles applied to a calibra ted area (front, left mirror,
right mirror) can also be applied to the areas nearby the calibrated
one.

We have developed this concept on simulation. We achieved better
results for the calibrated areas: the detection of the road, left and right mirror
are above 85% for all tested subjects. Still the performances for the other
areas are much lower. This is mainly due to the eye gaze estimation noise and
the non -optimal position of the camera.

Intelligent Vehicles demonstrations

The DMS integrated in the CR  F demo car (Eva scenario) and Vedecom
demo car (Martha scenario) has been successfully demonstrated during the

track tests of the Intelligent Vehicles demonstration event at Satory.

In both Eva and Martha scenario DMS is used to inform the HMI if the drive r

is distracted or not.

These demonstrations have shown the very good performances of the DMS for

the different scenarios even in adverse light conditions (bright sunny day with

direct sun light). The implemented strategy to trigger the distracted flag

wor ked wel | activating the Adistractiono flag
according to the driver distraction state. It must also be noted that during

these tests no detection lack and no false detection have been observed. These

demonstrations have also proven the reliability of the integration for different
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cockpit position and the reliability of the communication interfaces developed

specifically for the CRF and Vedecom systems.

3.1.2 E1.2 V2X communication

In this section, the V2X communication system rel ated developments and their

final statuses are summarized.

At the beginning of the project, off -the -shelf Cohda Wireless MK5 2 V2X
communication devices were brought. These devices provide state of the art

V2X communication features including the ETSI G5 pr otocol stack. During the
project, several development and tests were carried out to utilize the

capabilities of the equipment.

First, a robust and flexible application were developed that is able to transmit

custom messages between cars (i.e. on board unit s) or infrastructure (i.e. road

side units). The concept of such application was born during the AutoNet2030 3

project. The benefit of this feature is the possibility of rapid implementation of

new kind of messages or the newer version of the existing ones. Furthermore,

the application is able to transform data streams between different transport

| ayer protocols: I P/ TCP, | P/ UDP, GeoNetwor ki ng¢

connector, it can also capture the data stream from CAN bus.

Besides that, tests were pe rformed to understand how the standardized

Cooperative Awareness Message (CAM) and Decentralized Environmental

2 https://cohdawireless.com/solutions/hardware/mk5 -obu/

3 http://www.autonet2030.eu/
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Message (DENM) can be produced. During laboratory tests, the compliance of
the standards was investigated. This is very important for the intero perability

of different devices that implement the same standard.

Secondly, the previously mentioned application was improved to be able log
and record the V2X communication (and also any other local communication
if necessary). The recorded data streams can be replayed in real -time,

therefore the number of field tests can be reduced.

Furthermore, several field tests were carried out to record real data for
relevant AutoMate scenarios, as well as to measure the capabilities of the MK5
devices in real envir onment. It was found that the performance of these
devices meets the expectations, i.e. they similarly perform as other state of

the art equipment.

Finally, based on the recording and replaying features, a visualization

framework was developed to be able t o show what the V2X communication is
capable of. The framework has web -based frontend that runs in any modern
browser. The prototype version is deployed on a Raspberry PI 3. Its Wi -Fi
works in AP mode, thus the communicated information can be followed by t he

users easily using a smartphone or tablet. Of course, it is able to work with

live data as well, which makes field testing more convenient.

A V2X communication device has been deployed as road side unit in Satory
test track at Vedecom that broadcasts ro ad works warning message for field

testing.
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3.1.3 E2.1 Driver intention recognition

This section summari zes the devel opment and
i ntention recognitiono as previously [H2scri bec

3,4,5,6] and to be published in [7] .

E2.1 provides the TeamMate car with knowledge about probable and desired

current and future manoeuvre intentions of the driver. Such knowledge is

required to develop a share d understanding between the driver and the

automation. When the driver is in control, such knowledge can be used to

assess the safety of an intended maneuver prior to its execution and provide

adequate information and warnings. If the automation is in cont rol, it can be

used to select intention  -compliant behavior of the automation or to detect and

communi cate mismatches between the driverodos i

carods behavior.

To realize E2.1, we developed a conceptional model for intention and

maneu ver recognition based on (conditional) Dynamic Bayesian Networks,

whose structure and parameters can be estimated from annotated time -series
of human driving behavior. The model represents the statistical and causal
relations between t hes, thd perfovmed driging manéeugenst i o n
and available sensor information about the traffic situation and vehicle state.

The model then addresses the problem of intention and maneuver recognition

from the available situational context, where the situational con text is given
by a set of observable features, comprised and derived from the state of the
TeamMate vehicle, including its position in the road, and the traffic situation,

i.e., the state of other traffic participants. We treat the state of traffic

partici pants as a set of observable inputs or causes for the formation of

intentions and the state of the TeamMate vehicle as a set of observable outputs
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or effects resulting from the driving behavior. The model assumes that the

intentions of the driver evolve ba sed on the situational input encountered. The
intentions then manifest themselves in the execution of driving maneuvers

whose effects can be observed. The model formalizes these assumptions in a
conditional Dynamic Bayesian Network that is composed of a va riable set of
sub-models, e.g., to model the probability distribution over intentions given

the observable inputs. The detailed structure of these sub -models and the
parameters of their probability distributions and density functions involved are

estimated from annotated experimental data. Parameter estimation is
achieved via Bayesian parameter estimation, structure learning is achieved via

a greedy hill -climbing search in a search space of model structure using a

discriminative variant of the Bayesian Info rmation Criterion  [7] .

During runtime, the model can be used in two different settings, akin to
intention and maneuver recognition and intention prediction . If the driverisin
control of the vehicle, both observable inputs and outputs can be used to
simultaneously perform intention and maneuver recognition by continuously
inferring the joint belief state over the current intentions and maneuvers given

all available inputs and outputs observed thus far. If the automation is in
control, the model can be used for intention prediction by ignoring observable

effects resulting from the automation, and continuously inferring a belief state

over the intentions given the available situational input instead.

Throughout AutoMate, we adapte d the conceptional model to three different
scenarios using corresponding datasets: real -world motorway, simulated rural
road, and simulated roundabout scenarios. In [6] , we reported on the
development of models for rural road and roundabout scenarios, as used for
the Peter and Eva scenarios. For [7] , we further refined these models and

developed an additional model for highway scenarios, as used for the Martha
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scenario. The model for rural road sce narios has been integrated in the ULM
simulator and VED real vehicle demonstrator, the model for roundabout

scenarios has been integrated into the REL simulator demonstrator.

The final version of D2.1 has been evaluated on unseen test data.
Summarizing the latestresults [7] , the model for intention recognition on two -
lane motorways achieves an accuracy of 0.888, precision of 0.617, recall of

0.831, F -score of 0.708, and a false positive rate (FPR) of 0.101. The model

for intenti on recognition on rural roads achieves an accuracy of 0.952,
precision of 0.838, recall of 0.844, F -score of 0.841, and a false positive rate

of 0.029. Lastly, the model for predicting the intention of a driver to enter
roundabouts achieves comparative res ults with an accuracy of 0.850, precision

of 0.886, recall of 0.808, F -score of 0.845 and false positive rate of 0.107. To

allow for a numerical comparison with other approaches for driver intention
recognition on motorways reported in the literature [8, 9, 10] , we analysed
the time span between the model for driver intention recognition on
motorways consistently predicting a lane -change intention and the TeamMate
cardés centre crossing t hateddnamseen tesh data,dher y . Eval
model reaches an average prediction horizon of 6.08s. Discarding individual
prediction times greater than 10s (the overall execution time of a lane change

manoeuvre is usually assumed as approx. 10s [11] ) results in a more
conservative prediction time of 5.57s. A similar analysis for intention
recognition on rural roads shows that the model is able to predict a lane change

intention 4.60s prior to the TeamMate car crossing the lane boundary (or 4.44 S

when discarding values greater than 10s).

E2.1 has been successfully integrated in the VED real vehicle, the ULM
simulator, and the REL simulator demonstrator demonstrator to help enabling

our vision of the TeamMate concept. For this, E2.1 has been imple mented
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together with the functionality for the prediction of the spatial and temporal
evolution of the traffic scene (E3.1), online risk assessment for dynamic
objects (E5.1), and online learning (E4.2) into a single C++ Dynamically
Linked Library . Within the second and third cycle, this DLL was embedded into
functional plug -in modules for the simulation environment SILAB, used by the

ULM simulator demonstrator, and the third -party software RTMaps, used by
the VED real vehicle demonstrator, enabling the uti lization of these
functionality in corresponding demonstrators. For the REL simulator, we used

the TeamMate Extension SDK [12] to compile E2.1 to an executable that
connects to the REL simulator. The resulting VED real vehicle demonstrator
has been demonstrated during the final event. First and final versions of the

ULM simulator demonstrator have been evaluated at the end of the second

[13] and third cycle (Section 4.1), the final version of the REL simulator

demonstrator has been evaluated at the end of the third cycle (Section 4.2).
3.1.3.1 Comparison with the state of the art
This section primarily summarizes [4] and th e discussion and results to be

published in [7] , to which we refer for more information. Driver intention
recognition addresses the problem of anticipating driving manoeuvres, a driver

is likely to perform in the near future. As early knowledge about potentially
dangerous manoeuvre intentions may serve as a potential enabler to generate

adaptive warnings and early interventions, driver intention recognition is an
increasingly important topic for the development of advanced driver assistance
systems and has become a popular research topic. Approaches reported in the

literature (s ome comparative reviews are provided e.g. in [14] and [15])
mainly differ in respect to the selec ted scenarios and addressed manoeuvres,

modelling techniques used, and the sensor input considered.
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Concerning the sensor input, we distinguish between different kind of
information, causes and effects. Here, causes should be understood as
information perc eived by the driver that results in the formation of an
intention, e.g., a slow lead vehicle in the case of overtaking intentions. In
contrast, effects should be understood as the observable effects on the overall
behaviour of the driver and vehicle, resul ting from the existence of an
intention, e.g., head movements to check the blind spot or the initiation of an

overtaking manoeuvre.

Traditional driver intention recognition commonly focusses on modelling the

relations between manoeuvre intentions and their effect on the behaviour of
vehicle and driver. Existing approaches commonly focus on information about

the vehicle state, e.g. provided via the Controller Area Network (CAN) bus,

and the location of the vehicle in the lane to recognize driving manoeuvres as
early as possible [16, 17, 18, 19, 20, 21, 22] . An obvious limitation of such
approaches is the necessity for a manoeuvre to be initialized before it can be
recognized. | n order to overcome these limitations and extend the predictive
capabilities, more sophisticated approaches consider the inclusion of driver -
based input obtained from camera systems, e.g., by tracking head and eye
movements of the driver, to recognize char acteristic preparatory measures
preceding the execution of a manoeuvre, e.g. shoulder checks [14, 8, 23, 18,
24] . Driver -based input provides valuable information, but their inclusion only

shifts the recognition of manoeuvre intentions to earlier stages of execution

and with the increasing introduction of automation to the vehicle, driver -based
input for driver intention recognition may become misleading and, in the

extreme case of fully auto ~ nomous driving, obsolete.

For the development of driver intention recognition in AutoMate, we primarily

focussed on causes for intentions, given by the situational context, esp. the
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traffic situation, i.e., information about vehicles in the vicinity of th e driver. Up

to now, potentially due to limited sensor capabilities, such information has not

been used thoroughly for intention recognition, but is either neglected entirely

[25, 16, 21, 26, 27, 17, 18, 24] , Or restricted to the immediate surrounding of

the driver, namely the lead vehicle [28, 23, 22, 29, 19] and vehicles in the
blind spots [8, 9] . This is surprising, as where the inclusion of driver -based
input only shifts the recognition of manoeuvres to earlier stages of the
execution, information about the current traffic situation should be able to

provide inf ormation suitable to actually predict the intentions of the driver,
e.g., a slow driving lead vehicle may be the reason why the driver may form

the intention to overtake, while an acceptable gap may provide the reason why

a driver intends to return to the original lane.

Within AutoMate, we developed a model for driver intention recognition that
refrains from driver -based input but instead explores the utilization of
information about the traffic situation to extend the predictive capabilities of

the model and enable the use in highly automated or autonomous driving.

Models for driver intention recognition have been widely studied in context of

different scenarios and modelling techniques [14, 15] . Many studies address

lane change manoeuvre on motorways and rural roads [28, 25, 8, 9, 16, 23,

21, 10] or turning and stopping manoeuvres at intersections [26, 30, 27, 22,

29] . In contrast, roundabout scenarios are relatively uncharted. Muffert [31]

developed a method for the safe entrance to roundabouts using stereo

cameras, however, [32] proposed a model for recognizing

to exit or remain in a roundabout. In AutoMate, we developed a conceptional

model that was adapted to three different scenarios: real -world highway,
simulated rural road and simu lated roundabout scenarios.
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Modelling techniques primarily include probabilistic generative approaches like

Dynamic Bayesian Network (including Hidden Markov Models and their
variants) [26, 22, 17, 18, 19, 20] , Supposed to be better suited for modelling
temporal aspects [24] , or probabilistic and non  -probabilistic  discriminative
approaches, including Support Vector Machines (SVMs) [28, 16, 30,32] , Multi -
Layer Perceptrons [27] , or logistic regressions [15], which are better suited to
include complex feature set, like e.g. head and eye tracking data, for which

the definition  of a generative model may be complicated to define correctly

[33] . In the context of decision -making, the problem of predicting driver
manoeuvres based on the traffic situations is also addressed by gap
acceptance models [34, 35] . Gap acceptance models assume the existence of

a latent critical gap at which a driver is indifferent between accepting and
rejecting a gap in traffic [34] . This gives rise to a gap acc  eptance function
describing the probability that a driver accepts an offered gap, usually realized

as a logistic regression [34, 35] . Unfortunately, the limitation to logistic
regressions can be overly restricted in mo re complex scenarios. In AutoMate,
we tested both generative and discriminative approaches, and settled on
conditional Dynamic Bayesian Networks composed of sub -networks, which can
be interpreted as a combination of both generative and discriminative

appro aches.

One of the most sophisticated of such approaches for intention recognition on
motorways implemented in real vehicles up to date is the discriminative model
described by [8] and evaluated in  [9]. They used Relevance Vector Machines

as a probabilistic alternative to SVMs for learning a model for online recognition

of lane change intentions based on information about the vehicle state, head -
tracking, the lead vehicle and vehicles in the blind sp ot. The resulting model

can recognize lane change intentions of human drivers up to approx. three
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seconds [8,9] priortothe actual crossing of the lane (in the following denoted
as prediction horizon ). Building ont hese results, [23] proposed the use of
discriminative Latent -Dynamic Conditional Random Fields and extended the
driver -based input by hand and foot motion cues. They the state improved
prediction horizons, but do not report act ual numbers. Just recently, [10]
presented a model for recognizing and predicting lane changes, realized as a

(non -dynamic) Bayesian Network that incorporates both driver -based input
and the traffic situation, with the traffic situation being condensed into three
discrete levels of occupancy for each lane. They report a vastly improved
average prediction horizon of 7.8s at a recall of 0.7. Our model for intention
recognition on motorways achieves an average prediction horizon of 6.08s (or
5.57s when discarding individual prediction times greater than 10s) at a recall

of approx. 0.8. This exceeds the performance of [8, 9] but falls short of the
results presented by  [10] , showing the potential benefit of driver -based input,
if available. For rural roads our model is able to predict a lane change intention

4.60s prior to the TeamMate car crossing the lane boundary (or 4.44s when

discarding values greater than 10s).

3.1.3.2 Pre - existing developments

As previously described in [6] , for the development of the models for driver
intention recognition in AutoMate, we started with a pre -existing framework,
consisting of libraries and algorithms for the creation and utilization of
(Dynamic) Bayesian Networks, originally developed during the former EU
project HoliDes. Within AutoMate, this framework was significantly updated

and extended, e.g., to allow for the learning and utilization of more complex

mode | structures and parametric distributions, enabling the update of model
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parameters during runtime (as required by EA4.

the drivero), and enabling the use in rural r

To start the model development during the first cycle of AutoMate, prior to the
conduction of any data collection experiments, we made use of experimental

data obtained during the former EU project HoliDes. This data represented

real -world recorded in a CRF prototype vehicle with human dr ivers manually
performing overtaking vehicles. The data has been used for the development

of libraries and tools for the development and evaluation of models for driver

intention recognition until explicit experimental data for the development of

model for driver intention recognition on rural roads became available.

3.1.3.3 Facing the cold start problem

In regard to driver intention recognition in AutoMate, the cold start problem
can be understood as the problem of recognizing and predicting the intentions

of an i ndividual driver during the introduction period of the system, when

insufficient information about the specific d
start probl emd originated in the context of r
refers to the problem of performin g inferences for a user or item before the

necessary information for such inferences have been gathered [36] .

As a mitigation strategy to face the cold start problem for driver intention
recognition in AutoMate, we rely on the utilization of a prior or default model,
representing the average or a group of drivers that can then be adapted to the

individual driver, once such data is available. In AutoMate, this default model

is given by E2.1 AdDriver i nhgntEidarr?2 rideag miitnig
intention from the drivero, this defaul't mo d
individual driver in an online fashion (c.f. Section 3.1.6).
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As described in the deliverables of WP2 [1,2,3,4,5,6] , enabler E2.1 AD

Il ntention Recognitiono is reali zed in terms
parameters are structures have been learnt offline, using datasets obtained in

simulator studie s, as conducted by OFF, ULM, and HMT during the second and

third cycle. To start the model development during the first cycle of AutoMate,
prior to the conduction of any data collection experiments, we made use of
experimental data obtained during the form er EU project HoliDes (c.f. Section
3.1.3.2 ). The experiments and datasets to train the models have been
described in  deliverables D2.4, Section 4.3 [4] , D2.5, Section 3.1.2.3 [5] , and
D2.6, Section 4.3.1.2 [6] . The experiments have been designed to favor
multiple participants with comparable few iterations over the contrary. The
resulting models represent groups of drivers or the average dri ver, hopefully
being reasonable applicable, although not perfectly adapted, to a broad

spectrum of potential individuals.

3.1.34 Driver profiles

To some extent, E2.1, after being adapted by E4.2, can be interpreted as a

user model or driver profile to infer usefu I information about an associated
driver, in this specific case limited to the potential driving intentions given the

current traffic situation. This raises the question of whether and how it would

be possible to extend the capabilities of the user model t o additional
information of interest, e.g. lateral/longitudinal driver preferences or whether

the driver prefers risk averse or friendly driving behavior. We note that driver

profiles were not planned to be addressed in AutoMate and would require
substanti al effort in profile, privacy, and security management beyond the

scope of AutoMate. That said. we belief that the models for driver intention

recognition, adapted to the individual driver using E4.2, could be extended to
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or embedded in driver profiles in future research. As described in the
deliverables of WP2 [1, 2, 3, 4, 5, 6] and [7] , the models for driver intention
recognition basically encodeac  onditional probability / density distribution over

the temporary evolution of a set of latent states of the driver, e.g. intentions

and currently performed maneuvers, and observable effects of the driving
behavior, e.g. speed and control signals, given the observable vehicle state
and traffic situation. A natural first step for the extension into driver profiles

would be the addition of the distribution over the observable vehicle state and

traffic situation to obtain the joint distribution over all variabl es. If modelled
correctly, the resulting joint distribution could then readily be used for driver

intention recognition and to infer additional queries of interest, e.g., velocity
preferences in different situational contexts, while relying on the same

alg orithmic foundation already in place. Due to the use of embedded Bayesian
classifiers [6, 7] , information necessary for the realization of such driver
profiles is already partially encoded in the models for driver int ention
recognition. However, due to the use of discriminative machine -learning
techniques for feature selection that focused on maximizing the performance

of intention recognition, potentially valuable information for the realization of

driver profiles may  not be included.

We note however, that the Dynamic Bayesian Networks used for driver
intention recognition exploit knowledge about temporal dependencies that

may not be necessary for the realization of driver profiles. Simpler non
dynamic Bayesian Network s may be sufficient for modelling driver profiles,
resulting int easier to learn, more efficient, and potentially more robust
models. Nonetheless, such simpler models could easily be utlized in
conjunction with the models for driver intention recognition, utilizing the same

algorithms for parameter and structure learning, performing inferences, and
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online adaptation. The AutoMate partner OFF currently investigates the
model ling of driver profiles in““[8he BMWI

3.1.4 E3.1 Situation and vehicle model

proj

The fin a | status of Enabler 3.1 AVehicle [d4nd

[2] [3] [4] [5] [6] is summarized in this section. Representing the state and
semantic information about a scene is the desired capability in autonomous

driving systems. Therefore the situation model is an intermediate layer
between the sensor and communication pl atform updating the state
information for the driver models and vehicle model. Based on the sensor

i nformation, TeamMate vehiclebs current
and at constant interval the situation model is update via the sensor and

comm unication platform.

Within the scope of AutoMate project the development of the enabler 3.1 is

focused by considering two features; Semantic enrichment of the situation
model , which extends inputs from perception layer with semantic information

and the prediction of the future evolution of the traffic scene based on the

enriched and current state of the situation - and driver model.

3.14.1 Semantic Enrichment of the situation model

The semantic enrichment model extends the inputs of the perception layer
with sem antic information from the scene model. Semantic information such

as legal drivable maneuvers is inferred, on the basis of the modeled

4 AutoAkzept 1 Erhohung der Akzeptanz automatisierten und vernetzen

Fahrens. https://www.dIr.de/ts/desktopdefault.aspx/tabid

10704/20365_read  -54052/ , last visited 24.09.2019.
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relationship between the agents and the scene elements and the set of traffic

rules. In  [2] we proposed extended ontology with logical rules. An ontology is

a semantic model allowing to express the domain knowledge, the modeled
ontology is used to reason about the complex relations and facts. For this work

to model the relations between scene el ements a Web Ontology Language
(OWL) was used, and a Sematic Web Rule Language (SWRL) was used to
extend the modeled ontology with traffic rules. With amalgamating the two,

OWL and SWRL we successfully model the complete domain knowledge to infer
possible maneuvers for vehicles in the given scene. Figure 5 provides the
overview of sample ontology taxonomy describing the spatial, temporal and
semantic relations between scene objects. As a matter of visualization a
sample taxonomy tree is presented here. In [2] we define the classes for

modeling the relations between the scene elements

owl: Thlng = has subclass
DDnDEDtual Db]e allowed_maneuver (Domain=Range)
physu:al UbjEC‘t
= is_on (Domain=>=Range)
SDBI"B_E"JJB':t . _; maneuver = Is_overrided_by (Domain=Range)
p \z._ T

= joins_street (Domain=Range)

iy [_\
| gislade || Elosychize I _ sign_assigned_to_street (Domain>Range)

edestri ternal_vehicl m- E == signal_maneuver (DomainxRange)
pedestrian external_vehicl

street_has_sign (Domain=Range)

street_has_trafficlight (Domain=Range)

| road S;gn r | traf’fic_light |

== street_maneuver (Domain=Range)

Figure 5: lllustration of ontology taxonomy (left) and the relations legend

(right). For more detail please view it i n colour version.
illustrates the sample set of traffic rule that are based on the relations and
concepts of the ontology taxonomy to build the complete domain knowledge.

With the help of the reasoner the allowed manoeuvre for each of the vehicle
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in the scene can be inferred, the inferred manoeuvre could be used as a prior

for predicting the traffic evolution.

Name Rule Meaning
R1 i 0érnQetV é(vd')é Qo6 BAQY Stop sign allows stop
i "QQ@TdE Q6 ditktr © (i 0 éeq maneuver
R2 QAW D QQE vV d wE QO gAY Give way sign allows slow
i QQadE Qo gitkar O i a £Q¥ 0 ea maneuver
R3 o1 O WBOWERAY "Bio 60 Vc'()d;:&v)gi Vi QR Vv Red traffic light allows
i QQHME Q6 8RO © [ 0 éeq stop maneuver
R4 01 O QWOWRAv i £ DV i ¢ GOQQE Vv Traffic lights has high
01 &'QURNG b IWREHQO | @ded v priority comparing  to
[ Q@ | Qeedomi @ v traffic signs, if both are
i QQEHdE Q6 itk Vi QQHBOE Q6 sdRd g assigned to the same road
O {01 @®a Qo sitkhc
R5 i €0V € (:'d'QQ"QéVV maneuver allowed on that
i Q@ | QIO Qted v road depend on the
£ €01 OQUNGN INVOEHONI QIGnI &'Q assigned traffic sign
| QO@BE@IQ6 bedfear © § 01 QGE Qo ditkl where there is no traffic
light
R6 A€ ORUIKNQLOI € DV Traffic participants
i 01 QGa Q06 gitka v Qe tethei allowed maneuvers
O ®aaéa@Qo BEED depend on the road
theydre are on
R7 1€ deDVi £ Qo gey Q¢ tethei v Vehicles allowed maximal
‘@Widodn QU@ el kY velocity depend on the
O "@idwd n Qo étey road they are on

Table 1 Basic traffic rules expressed with the help of SWRL

The semantic enrichment module was successfully integrate d in the vedecom
demo vehicle and was demonstrated at Satory during the end demo event.

For packaging the model to facilitate seamless integration, we had developed
JNIOWLBridge in C++ as presented in [4] . The INIOWLBridge allows to access
the OWL ontology and the reasoner as a C++ function within our semantic
enrichment module. The JNIOWLBridge is the bridge between the Java
OWL/reasoner APl and C++ module. Furthermore, in the 3 d cycle we shipped
our semantic enrichment modul e as a C++ Dynamic Linking Library (DIl) to
wrap it as a plugin within RTmaps environment of vedecom vehicle, allowing

us to have a seamless integration. A communication module to communicate
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between the perception layer and our semantic enrichment module was also
integrated within the vedecom vehicle environment as a DI [6] . Figure 6 shows

the semantically enriched information about permissible driving manoeuvres

inferred using the reasoner from the semantic enrichment module . The module

was developed within the scope of the AutoMate, and no feature of the

component is being inherited from external projects.

Evaluation of this module was performed on synthesized data and tests data;

to quantify the measure of accuracy we use the F1 score as a metric. We
generated synthetic scenes to account for a large variance in scene
appearance and to perform robust evaluation. Due to the fact that our model

is a formal model, we obtained 100% accuracy on synthesized data. As we

have a core dependency of the perception output. On real data, the accuracy

of the model could drop with respect to uncertainties within the outputs of the
perception system  [6] . We noticed the module performs at 82.95 ms and
requires 60 0 MB for inference on a system with Intel -i7-CPU, 8 cores@2,8 GHz
and8GBRAM.Thecar -pc i n vedecombés real vehicle has
therefore we see the close performance in the test vehicle. The runtime is

proportional to the complexity of t he scene.
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i |
turn_right
lane__change_to_left
lane_change_to_right
2ft

Figure 6: Inferred semantic information about permissible manoeuvres for

vehicles based on the modelled domain knowledge from semantic enrichment
module.TheEgo -car ( TeamMate) inferred dynamic manheuver i
direction maneuver-ahsattdo bdskedeon the semantic info
the scene. The coded colours represent the semantic meaning about inferred

maneuvers (Legend). View it in colour to have better intuition.
3.1.4.1.1 Comparison of the state of the art

In [38] the author proposes a  Markov Logical Network  (MLN) framework for
situation interpretation and rules mining to infer real -world events under
uncertainty and ambiguous sensor information. Similar approaches as
proposed in [38] are greatly used for visual surveillance applications, where

the aggregation of complex scene information does not necessarily require

updates as in autonomous driving task.

As the authors in ~ [39] [40] [41] [42] present, ontologies are greatly used for
formal representation of the domain knowledge. At times modelling of these

ontologies could get complex whe n considering large space of domain
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information, and also remain laborious as they are designed manually from
experts. In  [40] the author reports an inference time of up to 1.17s for a single

frame at a complex intersection for reasoning about the scene. It is far from

real time inference requirements, although the author in [40] argues, forless -
complex scenes 500ms would be enough in real time. Nevertheless , We require

at least 100ms for real time d riving scenarios.

To overcome the complexities and the high inference time issues , We restrict

our domain knowledge to traffic rules. Moreover , limiting to traffic rules remain

enough to predicted manoeuvres for TeamMate vehicle and its surrounding

vehic les, which provides as prior to predict evolution of traffic. The author in

[41] has a similar ont ol ogy for an aut omated
Following the similar proposed method to design our knowledge base, we

greatly re duce the inference time to be within the bounds of 100ms, which is

more suitable for automated driving task. Nevertheless , our approach has a

limitation towards the consistency check of the inputs from the perception

model, th ese limitations are going to be considered in our future works.

3.14.2 Prediction of evolution traffic scene

Long -term prediction of traffic participants is crucial for the development of

advanced driver a  ssistance systems and advancement of autonomous driving

on public roads [43] , e.g., existing trajectory planning components already

require prediction horizons of up to ten seconds [44] . To achieve along -term
prediction, the TeamMate car makes use of the traffic prediction  component
a probabilistic model, comprising situation and vehicle models, to predict the

likely temporal and spatial evolution of the TeamMate car and all traffic
participants ob served in its vicinity. The traffic prediction has been developed

for two -lane rural road and motorway scenarios, where it provides a long -term
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prediction, with user  -defined horizon and step size, with integrated recognition

of lane-keeping and lane -changi ng behaviors for better prediction accuracy
[6] .

The traffic prediction is characterized by the following key aspects: Traffic
prediction is performed at constant intervals for the TeamMate car and each

dynamic object detected in its vicinity. Once started, the state of each object
considered is predicted for equidistant points in the future, up to a user -defined
maximum prediction horizon. The state of each object is represented by a six -
dimensional Gaussian belief state over its location (inatwo  -dimensional global
coordinate system), its yaw angle, velocity, acceleration, and yaw -rate. For
predicting the state of an object into the future, the constant yaw -rate and
acceleration (CYRA) motion model is used. The CYRA motion mo del is a
physical motion model that describes the non -linear dynamics of location, yaw

angle, and velocity (of a point mass) under the eponymous assumption of

constant yaw -rate and acceleration in a set of motion equations [45] . As the
assumption of constant yaw  -rate and acceleration is insufficient for long -term
prediction, a set of simple driver models, selecting appropriate yaw -rates and

accelerations to perform specific manoeuvres based on a map of the

environment, isusedt o enable context -specific alterations of the yaw -rate and
acceleration during the prediction. Inference -wise, the prediction is achieved
by unscented transformation, as used in unscented Kalman filters [46] . For

this, the six -dimensional belief state is condensed into a set of characteristic
sigma points, which are then passed through the equations of the CYRA motion
model. The resulting transformed sigma points are then used to derive a new

six -dimensional belief state, represe nting an approximation of the result when

passing the original belief state through a non -linear function.
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Given these components, the traffic prediction operates as follows (c.f. Figure
7Figure 7): The traffic prediction maintains a Gaussian belief state for the

TeamMate car and each dynamic object in its vicinity, which is constantly
updated whenever new sensor information is provided. At constant intervals
and for each object considered, the CYRA motion model and the set of driver
models is used to perform a short -term prediction for each considered

maneuver hypothesis. At the next time step, the new sensor observations are

incorporated into the short -term predictions to obtain the likelihoods for each
maneuver. The most probable m aneuver is then used for a long -term
prediction. The result is a long -term prediction for the most probable

maneuver for each dynamic object in the traffic scene, represented as a set of
multivariate Gaussian distributions over the location, yaw angle, vel ocity,
acceleration, and yaw -rate for the desired user  -defined discrete time steps in
the future. The long -term prediction is then used by E5.1 to perform online

risk assessment for the TeamMate car (c.f. Section 3.1.7).

Provided
by vehicle

CYRA motion model
+ unscented transformation

Predicted location at future point in time

a) b)

Figu re 7: Schematic probabilistic model for traffic prediction (a). Overview

of functionality (b).
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Evaluated on test data obtained in simulator studies throughout AutoMate, the

final version of the traffic prediction achieves a correct rate of prediction above
90% for prediction horizons up to five seconds for vehicles controlled by

human drivers while requiring an average execution time of 0.139ms per
predicted object and second on an i7 -6700 CPU @ 3.40GHz, 16GB Ram
desktop computer ru  nning a Microsoft Windows 10 64 -Bit operation system
[6] .

Throughout the second and third cycle of AutoMate, the traffic prediction has

been successfully integrated in the VED real vehicle and the ULM simulator
demonstrator t o help enabling our vision of the TeamMate concept. For this,

the traffic prediction has been implemented together with the functionality for

online risk assessment for dynamic objects (E5.1), the driver intention
recognition (E2.1), and online learning (E 4.2) into a single C++ Dynamically
Linked Library. The DLL was then embedded into functional plug -in modules
for the simulation environment SILAB, used by the ULM simulator
demonstrator, and the third -party software RTMaps, used by the VED real
vehicle dem onstrator, enabling the utilization of all functionalities in the
corresponding demonstrators. The resulting VED real vehicle demonstrator has

been demonstrated during the final event, first and final versions of the ULM
simulator demonstrator have been ev aluated at the end of the second [13]

and third cycle (Section 41)
3.1.4.2.1 Comparison with the state of the art

Traffic prediction must deal with uncertainties, arising e.g. from the inability
to perfectly observe the current traffic situation, the hidden intentions of the
traffic participants, and variability in how these intentions may be executed

[47] . Approaches for traffic prediction can be broadly categorized as short
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term prediction, long -term prediction, and abstract forms of situation
prediction [47] . Short - and long -term prediction attempt to directly predict the
evolution of vehicle states on different time scales, while abstract forms

summ arize the evolution in terms of manoeuvre or intention recognition (c.f.

Section 3.1.3 ) or risk assessments (c.f. Section 3.1.7 ). As a general enabler
for other technologies like risk assessment or tr ajectory planning, traffic

prediction in AutoMate belongs to the former categories.

Short -term prediction relies on motion or vehicle models to predict the short -
term motion of a vehicle in which the influence of driver and environment are

minor and the pr ediction depends only on the driving physics and system
dynamics [47] . The general topic of vehicle dynamics is well studied and
understood (e.g. [48] ) and numerous motion models with different degr ees of
complexity have been proposed for this task [45] : At the lower end of
complexity lie linear motion models, assuming a vehicle to travel on a straight

path with constant velocity = or constant acceleration . Having linear st ate
transition equations, they allow for a direct utilization in Kalman -filters.
Curvilinear models such as the constant yaw -rate and velocity orthe constant
yaw -rate and acceleration  (CYRA) motion models also incorporate rotation but

deny any correlation between velocity and yaw -rate. This assumption is
relaxed by the  constant steering angle and velocity and the constant curvature
and acceleration  motion models. The latter motion models share many
similarities with the kinematic bicycle model [49] [50] , representing the lower
end of complexity for the variety of vehicle models . Like motion models,
vehicle models with many different degrees of complexity have been proposed.
Unfortunately, the informa tion necessary for their utilization (e.g., individual

tire slip) are not observable by exteroceptive sensors, such that their use is

limited to predicting the motion of the ego (TeamMate) vehicle. Schubert et

< 30/09/2019 > Named Distribution Only

P 48 of
Proj. No: 690705 age ©

244




N
L >

—~
g o\
AutoMate Automation as accepted and trusted TeamMate to enhance € 5T

traffic safety and efficiency

al. [45] performe d a comparison of many of these models for the task of
vehicle tracking and found the CYRA motion model to be the most effective
trade - off in terms of precision and efficiency. The CYRA motion model was also
successfully used by [51] and [52] . Based on these findings, we decided to

use the CYRA motion model within our traffic prediction.

Independent of the vehicle model utilized, the assumption of constant inputs

Is only reasonable for prediction hor izons of less than a second [15] . Forlong -
term prediction with prediction horizon above a second, the constraints on the

possible trajectory of vehicles imposed by the road network and likely

maneuvers and maneuver intentions have to be considered  [53] .

Constraints imposed by the road network are usually either incorporated
implicitly using lane  -based coordinate systems or explicitly by the use driver
models. Many approaches operate on a lane -based reference of Frenet frame,
where the x -axis is given by a mathematical function like the course of the

road or a planned reference trajectory [20] [47] [43] [54] [55] . Working in
such a transformed system greatly simplifies the problem of incorporating road

network constraints in that a simple linear model in the transformed space will

perfectly follow the road in the Cartesian space. Unfortunately, lane -based
representations may not be possible or require complicated treatment for more
complicated road networks [54] (e.g., parking lots, intersections,
roundabouts). Furthermore, a transf ormation into Cartesian space, if required
from other components along the processing chain, may be complicated and
computational expensive. In contrast, our approach directly works in Cartesian

space, using more complicated drive models.

[30] and [56] used a combination of Support Vector Machines and Bayesian

Filtering for intention recognition and Rapidly exploring Random Trees for
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trajectory prediction. [57] and esp. [20] used Hidden Markov Models for
intention recognition and Gaussian Processes for trajectory prediction. They

used the recent positions of traffic participants to estimate a Gaussian Process

over trajectory, which could then be used to predict the (non -linear) trajectory
without the need of dedicated driver models. The use of Gaussian Processes
seems very promising but is (for now) limited by the prohibiting computational

complexity.

[43] proposed a prediction based on particle filters, Monte - Carlo simulations,
and a microscopic driver model called the Intelligent Driver Model (IDM) to

predict the future longitudinal car -following behavior. More specifically, each
traffic participant is modelled by an IDM model, whose parameters are
maintained in a particle filter guided by the observable driving behavior. A

Monte -Carlo simulation is then used to predict the future motion using the
parameters of the IDM model provided by the particle filter. Equivale nt to our
approach, the prediction is performed for discrete steps in the future. Unlike

our approach, but characterizing for sampling approaches, the resulting
prediction is only implicitly represented by the different particles. For actual

use, the parti  cles must be approximated by some probability distributions, e.g.

a (multivariate) Gaussian distribution. Our method directly works in a Gaussian

space and requires less computational power.

Our approach was inspired by [58] , proposing the use of four -dimensional
Gaussian state space within a Kalman filter and control signals provided by

path -following driver models. We extended this approach by the use of the

CYRA motion model and unscented transformation (i.e. unscented Kalman

filters) and additional lane changing driver models. Within the timeframe of
AutoMate, [59] developed a very similar system, using a similar combination

of multivariate Gaussian belief states, unscented transformation, CYRA
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motion, and driver models for simultaneous manoeuvre recognition and
trajectory prediction. They however focused on turning behaviour at
intersections instead of overtaking in rural road scenarios. For future
development, it should be possible to combine bot h approaches to extend the

set of scenarios and manoeuvres considered.
3.1.4.2.2 Pre-existing developments

Conceptualization, development, and implementation of the algorithm pipeline
for the traffic prediction has been realized exclusively within the context of
Aut oMate. No part of the enabler has been inherited from previous projects

nor addressed in any other European projects.
3.1.5 E4.1 Planning and execution of safe manoeuvre

In Automate it is intended to drive in structured environments such as rural
roads or high ways (see the Automate Demonstration scenarios). Therefore , in
the following there are two popular state -of-the art trajectory planning

algorithms presented.

The first one is an approach based on polynomial sampling [1]. Therein the

center line of each lane which can e.g. be stored in a digital map has to be
known. In the first step the ego vehicle is getting transformed from Cartesian

coordinates (e.g. UTM) into the Frenét coordinates of the one center line
dedicated to the lane the vehicle is supposed to d rive on. In Frenét coordinates

the vehicles position is described by the longitudinal distance from the
beginning of the line and the lateral deviation from it. Each polynomial now
describes the vehicles reference poi ndobgs
and lateral to the center line over time. Each longitudinal and lateral trajectory

is described by a quintic polynomial. In order to be able to specify values for
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each coefficient, 6 conditions for each polynomial are required. The initial

vehicle s tate already contains 3 of them (position, velocity acceleration). To

be able to also obtain the remaining coefficients, terminal states for a specific

terminal time are sampled as well (for further details have a look at [1]). Each

longitudinal trajectory can then be combined with each lateral trajectory and

the fAbestdo one in terms of predefined costs

kinematic feasible is selected to be forwarded to the vehicle controller.

Another approach is the one presented in [2]. Ther ein a driving corridor
consisting of two -lane boundaries is used to mark the area in which the vehicle

is supposed to stay in. Then a continuous optimization problem is stated to

obtain an optimal solution that guides the vehicle central to the corridor by
approaching the target speed. To make the drive more comfortable to the
vehicle passengers, accelerations as well as the uncomfortable jerk (derivative

of the acceleration) are getting penalized by using appropriate cost terms. To

avoid collisions with ot her vehicles, the ego vehicle is approximated by circles

and foreign vehicles by trapezoids. Subsequently according hard constraints

are introduced to make sure the circles do not collide with these trapezoids.
Furthermore, only trajectories that fulfill t he kinematic constraints are
considered as valid. The mightiness of this approach can e.g. be seen in [5].
Therein the equipment of the autonomous driving S -cl ass ABert hao
described. The applied trajectory planning concept is the one in [2]. Bertha

comp leted the historic route of 103km from Mannheim to Pforzheim

completely autonomously.

Within the Automate project a new trajectory planner based on the concept in
[2] was developed. One major difference is that the cost functional was
modified in a way to be able to explicitly consider information in concerns to

social compliant behavior [3 ]. Therefore , reference trajectories which are
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calculated using appropriate driver model s e.
[4] are integrated in the first step. The nature of this reference trajectory

allows it to incorporate this reference into the already mentioned cost

functional of the optimization problem. Since the reference itself may not

directly be forwarded to the vehicle controller, smoothing terms to penalize

the acceleration and jerk are added as in [2]. The resulting solution aims to

guide the vehicle along the road while approaching the target speed. The

resulting behavior is social compliant in a way that e.g . necessary safety

distances to other vehicles are held.
3.1.6E4.2 Learning of intention from the driver

This section shall give a summary of the development and the final status of
E4. 2 ALearning of intention from drivero as

deliver ables of WP3 [60, 61, 62, 63, 64, 65]

The Learning of intention from driver relies on the Driver Intention Recognition

(DIR ) mode | from WP2. The initial DIR model is trained offline with data from
multiple different drivers and therefore represents the average driver. Enabler

E4.2 personalizes the initial DIR model by adapting the model parameters

during driving. For a warning -based system which tries do recognize driver
intentions during manual driving this might reduce the number of false alarms

for the individual driver. During automated driving, where the model could be

utilized as a basis for manoeuvre decisions, it could lead t 0 a more pleasant
driving behaviour. In both cases a personalized model could increase the
acceptance of and the trust in the system. Therefore, it is desirable that
cooperative automated vehicles are able to adapt their automation strategies

to the driver 6 s preferences to guar andlikeedrivilg human

behaviour.
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The DIR model is based on (conditional) Dynamic Bayesian Networks (DBN).

The nodes of DBNs can represent different types of probability distributions.

The enabler E4.2 is able to personaliz e the initial DIR model for the individual
driver by updating the parameters of probability distributions of the model

while driving. The currently implemented online learning algorithms provide

update methods for the parameters of discrete, multivariate G aussian and
Mixture of Gaussian distributions while the structure of the DBN stays
unchanged. The update methods rely on Bayesian parameter learning and the

usage of hyper -parameters which describe probability distributions over the

model parameters. The h  yper -parameters are updated as new evidence
becomes available through observations, d etails were provided in [65] , [63] ,
and [61] . Since the update methods work in a supervised manner they require
complete data samples. Thus, in order to be able to apply the algorithms

during driving, an automated sample generation and labelling methods are
necessary. The automated sample generation which was implemented for
AutoMate r elies onforward -backward inference, also known as smoothing, and
employs the DIR to create labels for variable sequences of observed data

points. Details on this process can be found in [65] .

As described in  [65] the smoothing based sample generation can be quite
computational expensive depending on the complexity of the used model and

the amount of data points, which have to be processed during the backward
inference. In the worst case this lead s to delays in the simulation environment
or the dropping of data points. To avoid this, the enabler was extended by the

option to perform the backward inference in a separate thread.

Additionally, a specific interpreter class was introduced that can be app lied,
for example, during the cooperative parts of the Peter scenario. In this case

the driver has the opportunity to directly communicate the lane change

Named Distribution Only Page 54 of

<30/09/2019 >
Proj. No: 690705

244




—
g o\
AutoMate Automation as accepted and trusted TeamMate to enhance 5T
\ fm‘\, ]

AL

traffic safety and efficiency

pe:
mmissior

intention via the HMI to the automation. Furthermore, the exact duration of
the manoeuvre is known, si nce it is executed by the automation. Thus, by
defining specific labelling rules the smoothing is not absolutely necessary for

this case and the computational effort for can be reduced. However,
implementing the specific interpreter requires some knowledge about the used
DIR, e.g., names and values of the variables that shall be affected by the rules,

while the smoothing based labelling requires usually no further knowledge of

the internals of the DIR.

Since non -lane change data samples are predominant in t he training data, as
reported in  [6] , it can be expected that also during driving the amount of lane
change sample is much lower than the amount of non -lane change samples.
To reduce the imbalance in the samples and to somewha t increase the
influence of the few samples that can be gathered for the individual driver

during the experiments compared to the amount of data that was used to train

the initial DIR model an oversampling functionality was implemented. The
oversampling cr eates additional virtual samples for lane changes close to the
actual samples during the experiments. This is achieved by multiplying the

actual observed samples of the lane change manoeuvres with samples from a

narrow Gaussian.

As mentioned in  [65] this enabler was compiled into a C++ Dynamically Linked
Library. For integration into the ULM simulator, this library is wrapped in a
SiLab DPU. For the integration into the VED demonstrator the library is

wrapped into a RTmaps pack  age.

For the possibility to visualize the change from the initial DIR model to the
current updated one during driving an additional stand -alone application was

implemented. The application can receive the current model parameters from
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lab DPU or RTmaps package via a socket connection and

visualize every supported distribution available in the DIR model.

The distri

cascading dropdown menu. The Application will draw the

bution that shall be visual

together with the current distribution as shown in Figure 8. The current

distribution graph is updated whenever a new message with updated model

parameters is received via the aforementioned socket connection. The

connection parameter

S can be configured Vi a

communication is described in more detail in deliverable D5.7.
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3.1.6.1 Comparison with the state of the art

Personalization of driver model with the application of online learning in the
automotive domain is still some recent development. However, none of the
approaches so far utilizes DBNs. In [66] the authors give an overview about
some state -of-the -art approaches to the personalization of ADAS or driving
style for automated vehicles. The approaches cover the following fields of

personalization:
1 ACC systems

71 forward collision warning and brake assistance
1 lane keeping

1 cooperative assistance

1 automa ted driving

1 lane change

The personalization for ACC systems covers approaches where the driver is
assigned to a certain driving style group and the ACC provides the appropriate
control strategy, as well as approaches where the ACC attempts to mimic the
dri ving style of the individual driver. The ACC approaches concentrate on gap

preferences, acceleration profiles, and car following models.

The approaches for collision warnings as well as those for lane keeping provide

warning thresholds for individual drive rs.

Personalization for cooperative assistance mainly covers selective assistance

functions or modalities dependent on direct requests or situations.

For the case of automated driving, the presented approaches either aim at

learning individual driving styl es for highway driving or general trajectory
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planning by imitating the driver, or their intention is to determine the individual

driver prefers a defensive or a rather assertive driving style.

More related to the applications of AutoMate is the personaliza tion for lane
changes. In  [66] only the work of  [67] is presented. In this approach GMMs
trained via EM are used to model lane -change and car following behaviour. In
order to make the model respon sive to individual drivers and behaviour
changes the EM training is started again whenever a sufficient amount of new
samples is available. Since the retraining consumes many resources the GMMs

are retrained on a certain batch of recent data. In contrast t 0 our approach
the model only represents the recent driving behaviour and ignores older

experiences.

A fuzzy Case -Based Reasoning and Situation -Operator modelling based
approach to individualize and learn situation recognition for lane -changes is
shown in [68] . The initially offline learned models are already individualized

for a single driver and are then trained further online during a simulator
experiment. However, the case base might grow over time leading to an

increased ti me to check for known cases.

Another system for personalized lane change assistance is presented in [69] .
In a highway scenario lane changes to the left and the right as well as lane

keeping are modelled and predicted with HMMs . Starting form a general model,
incremental batch learning for HMMs including several EM iterations on each

new data batch is employed to implement a personalization for individual

drivers. The approach should work while driving but the learning and

evalu ation is so far only performed with offline data. The automatic data

labelling of this approach relies on the detection of an actual lane change and

driver data to detect certain head movements of the driver. The author shows
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that the personalized models o utperform the initial general model. In contrast

to that, our approach does not require driver data.

A further topic for personalization and online learning in the automotive

domain is the manoeuvre prediction at intersections. In [70] a manoeuvre
forecast for other road users at intersections based on a Bernoulli -Gaussian
Mixture Model is described. An update of the model is realized by means of
sequential EM. In contrast to our approach, updating of the model while driv ing

and an online sample generation are not covered.

Additionally in  [71] the authors present an approach to individualize the
prediction of stop, turn or straight manoeuvres at intersections for the current
driver. Online Ran dom Forest is used to learn from automatically labelled real
driving data. This approach employs also an automatic data labelling but only

for a fixed number of samples.

3.1.6.2 Pre - existing developments

As mentionedin  [65] , the deve lopment of this enabler for AutoMate could start

with a pre -existing framework, consisting of libraries and algorithms for the

creation and utilization of (Dynamic) Bayesian Networks. This framework was

originally developed by OFF during the former EU proj ect HoliDes °. For
AutoMate many updates and extensions were implemented. With respect to

E4.2 these are:

1 the general ability to store model parameters in a way that they can be

updated during runtime, e.g., as sufficient statistics

5> www.holides.eu
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1 update methods for diffe  rent distribution types used by the DIR

(discrete, Gaussian, and Mixture of Gaussian)

1 methods for online sample generation
3.1.7 E5.1 Online risk assessment

This section summarizes the development and fi
assessment 0 a sdegcribedvin tieewdalivesables of WP3 [60, 61, 62,
63, 64, 65]

In the context of intelligent driving systems, the purpose of risk assessment is

commonly associated with an earl y detection of situations
dangerous for the driver, i . e. [15haThisnequisesi| t i n |
a concept to quantify and formalize the safety of the current and near -future

traffic situation according t 0 a metric of risk. The spatial and temporal region
surrounding the TeamMate car in which there is no risk or acceptable levels of

risk can intuitively be understood as safety corridors . The TeamMate car may
occupy any point in the safety corridor without endangering the passenger or
other vehicles. Once formalized in an appropriate form, safety corridors can

be used by the TeamMate car to assess and plan safe and feasible trajectories,

leading to a set of algorithms that allow identifying safe and reasonab le

arrangements of the driving process.

For AutoMate, the enabler E5.1 AOnline risk a
to provide the TeamMate car with such safety corridors. Online risk
assessment was divided into two independent parts that have been realize d
by different partners and shall be described in separate subsections: online

risk assessment with respect to dynamic objects, like other traffic participants
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in the vicinity of the TeamMate car, and online risk assessment with respect
to static objects , like obstacles and road boundaries.
3.1.7.1 Dynamic Objects

Online risk assessment for dynamic objects has been developed to formalize
and quantify the safety of the current and near -future traffic situation

according to a metric of risk into safety corridors.

As a metric of risk, we decided upon the probability of collision , i.e. the
probability that the TeamMate car collides with another dynamic object.
Following this idea, we developed a concept of safety corridors as geometric
interpretations of the area in whi ch the probability of the TeamMate car
colliding with another object for a specific temporal interval is bounded by a

user -defined threshold as a set of polygons.

Online risk assessment for dynamic objects requires knowledge about the
probable current and future states of all dynamic objects observed in the
vicinity of the TeamMate car, which we refer to as the prediction of the spatial

and temporal evolution of the traffic scene (Figure 9a) . In AutoMate, this
prediction is provided in terms of probability density functions over the state
of each dynamic object for future points in time by the traffic prediction (E3.1,

c.f. Section 1.1.1.1 ). Given such a prediction, the predicted location and pose

of vehicles at consecutive point s in time are combined into polygons enclosing
probable locations of vehicles for resulting temporal interval. Together the
polygons implicitly define a safety corridor in which the TeamMate car may
maneuver with a bounded risk of collision (Figure 9b). On ce constructed,
safety corridors can be used by the TeamMate car to plan safe trajectories,
assess the safety of a trajectory planned by the automation, or assess the

safety of a trajectory predicted for the human driver prior to its execution. The
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geometr ic interpretation of safety corridors allows for a quick assessment of
potential trajectories as safe or critical, by checking whether the trajectory
would force the TeamMate car to leave the safety corridor in a specific

temporal interval (Figure 9c).

Figure 9: Visualization of safety corridors, a geometric interpretation of the
area in which the probability of the TeamMate car colliding with another
object for a specific temporal interval is bounded as and the use of safety
cor ridors for trajectory assessment.

Evaluated on test data obtained in simulator studies throughout AutoMate, the

final version of online risk assessment for dynamic objects achieves a correct

rate of classification above 90% for prediction horizons up to 6 seconds [65] .
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