

TeamMate System Architecture including open API for 2nd
Cycle

Project Number: 690705

Classification

Deliverable No.: D.5.1

Work Package(s): WP5

Document Version: 8.1

Issue Date: 31/10/2018

Document Timescale:

Start of the Document: 11/07/2018

Final version due: 31/10/2018

Compiled by: Mohamed Cherif RAHAL

Authors: Mohamed Cherif RAHAL (VED)

Steve Pechberti (VED)
Stefan Suck (OFF)

Mark Eilers (HMT)
Elisa Landini (REL)

Fabio Tango (CRF)
Adam Knapp (BIT)

Lynda Halit (VED)
Daniel Twumasi (HMT)

Alain Giralt (CAF)

Technical Approval: Fabio Tango (CRF)

Issue Authorisation: Andreas Lüdtke, (OFF)

 All rights reserved by AutoMate consortium
This document is supplied by the specific AutoMate work package quoted above on the express
condition that it is treated as confidential to those specifically mentioned on the distribution list. No
use may be made thereof other than expressly authorised by the AutoMate Project Board.

Ref. Ares(2018)5583131 - 31/10/2018

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 2 of 66

DISTRIBUTION LIST

Copy type1 Company and Location Recipient

T AutoMate Consortium all AutoMate Partners

1 Copy types: E=Email, C=Controlled copy (paper), D=electronic copy on
Disk or other medium, T=Team site (Sharepoint)

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 3 of 66

Content table

List of Figures .. 5

List of Tables ... 6

List of Abreviations .. 7

Executive Summary ... 8

1 Introduction ... 9

2 Global overview of the TeamMate system 10

 The TeamMate concept of cooperation ... 10

 The enablers .. 14

3 TeamMate functional Architecture .. 20

 Information exchange between enablers 23

 Dataflow diagram and Enablers interconnection 23

4 Data flow, data structures .. 26

 Standards .. 26

4.1.1 Time synchronization ... 27

4.1.2 Coordinate systems ... 27

 Data Structures .. 27

4.2.1 Pose and motion of the TeamMate vehicle 27

4.2.2 Pose, Motion, and dimension of detected objects 28

4.2.3 Semantic annotation of detected objects 29

4.2.4 Prediction of the spatial and temporal evolution of detected objects
 30

4.2.5 Digital Maps .. 30

4.2.6 Safety corridors ... 30

 Data interface .. 32

4.3.1 Environment model .. 32

4.3.2 Static environment model ... 32

4.3.3 Dynamic environment model ... 33

4.3.4 Evolution of the traffic scene ... 33

4.3.5 Safety corridor .. 34

4.3.6 Planned Trajectory ... 35

4.3.7 Driver’s state .. 36

4.3.8 Online Learning from the Driver .. 39

4.3.9 Component Communication Framework 40

5 The TemMate API for the second cycle 42

 Commuinication of the TeamMate car with its envirennement: the V2X
related standards ... 52

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 4 of 66

5.1.1 ETSI TC ITS V2X Reference Architecture 53

5.1.2 Decentralized environmental notification message 54

 Third party HMI SDK specification ... 56

5.2.1 DQuid SDK definition ... 56

6 Conclusion .. 61

7 References .. 62

Appendix 1 ... 63

Example of JAVA code generation .. 63

Example of C++ code generation ... 64

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 5 of 66

List of Figures

Figure 1: State machine that shows how the cooperation is implemented .. 13

Figure 2: State diagram of AutoMate Human Machine Cooperation. 13

Figure 3 : Sketch of the intended overall TeamMate System architecture ... 20

Figure 4 : Sketch of the model-based architecture of decision modules...... 21

Figure 5 :Sketch of manoeuvre planning architecture 22

Figure 6 : Sketch of TeamMate-HMI architecture 23

Figure 7: Current AutoMate system architecture 24

Figure 8: Exemplary realization of a network of components. 41

Figure 9: Example of communication within the component communication
framework. .. 42

Figure 10. ETSI TC ITS reference architecture .. 52

Figure 11. General structure of DENM [2] .. 54

Figure 12: DQuid SDK high-level architecture ... 57

Figure 13: Write the DQuidObject’s properties .. 58

Figure 14: Subscribe/update the DQuidObject’s properties 58

Figure 15: Example of the structure of the properties in JSON 60

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 6 of 66

List of Tables

Table 1: different types of alternate controls. ... 11

Table 2: How the enablers in all WPs contribute to cooperation................. 16

Table 3: The EgoState data structure. ... 27

Table 4: The Object data structure. ... 28

Table 5: The ObjectAnnotation data structure... 29

Table 6: The ObjectTrack data structure .. 30

Table 7: The 2DPoint data structure. ... 31

Table 8: The Polyline data structure. ... 31

Table 9: The ObjectPolyline data structure. .. 31

Table 10: The SafetyCorridor data structure. .. 31

Table 11: Content of the message defining the static environment model. . 32

Table 12: Content of the message defining the dynamic environment model.

 .. 33

Table 13: Content of the message defining the semantic prediction........... 33

Table 14: Content of the message defining the probabilistic prediction 34

Table 15: Content of the message defining the probabilistic prediction 35

Table 16: Content of the message defining the planned trajectory. 35

Table 17: Content of the Drowsiness message .. 36

Table 18: Content of the Visual Attention Fast message 37

Table 19: Content of the Visual Attention slow message 38

Table 20: Content of the Cognitive Distraction message 38

Table 21: Content of the driver’s-state Raw-data message 39

Table 22: Online learning from the driver... 39

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 7 of 66

List of Abreviations

A2H : Automation to Human.

AM : Automation Mode.
API : Application Programming Interface.

CAM : Cooperative Awareness Message.
CSM : Control Sharing Mode.

DENM : Decentralized Environmental Notification Message.
DIR : Driver intention recognition

H2A : Human to Automation.
HMI : Human Machine Interface.

MM : Manual Mode.

SDK : Software Development Kit.
SMM : Safe Manoeuvre Mode.

TCP : Transmission Control Protocol.
TOR : take-over request.

UDP : User Datagram Protocol.
V2X : Véhicule to all communication.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 8 of 66

Executive Summary

This deliverable D5.1 presents the global AutoMate System architecture and

the adapted architectures for each demonstrator, making sure that the
architecture works on all demonstrators of the AutoMate project, considering

their different initial starting point. An explanation of dataflow, within the
SW/HW construct and a clarification of stateflow concerning the teammate car,

is also provided, together with protocols for communication.

Another important part is the definition of interfaces between the modules, as
well as the common data formats standards and communication protocols.

Therefore, the TeamMate Application Programming Interface (API) is defined

in terms of principles, standards, interfaces, and data structure that enables
the communication of information between components in the TeamMate

ecosystem, based on exchanging messages in a publisher-sucscriber
messaging patterns. The goal is to have common data formats for interfacing

the modules. We provided a first definition of a set of such data structures.
However, it is worth to note that the definition is non-exhaustive and may be

subject to change if the need arises during integration and advances in the
development of enablers for the TeamMate demonstrators.

Finally in this document, the software modules are specified and dedicated to

their corresponding enablers. Moreover, the teammate cooperation modes are
explained, including the concept of Automation to Human (A2H), as well as

Human to Automation (H2A) communication.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 9 of 66

1 Introduction

This document presents the global AutoMate System architecture. The purpose
of the Automate project is to build a complete software/hardware concept for

the teammate car. Therefore, each module has to be developed and
programmed and finally all modules have to be put together. Due to the

number and complexity of these modules, the composition can be become a
complex task and needs to be well coordinated. Also one needs to make sure,

that the architecture works on all demonstrators of the Automate project
considering their different initial architectures. For this reason WP5 deals only

with the issues mentioned above and this document presents the global

teammate architecture, as well as the adapted architectures for each
demonstrator. Another important part is the definition of interfaces between

the modules, as well as common data formats standards and communication
protocols.

Therefore, the TeamMate Application Programming Interface (API) is defined

in terms of principles, standards, interfaces, and data structure that enables
the communication of information between components in the TeamMate

ecosystem. In the following, we will present a common design principle for the
communication between components in the TeamMate ecosystem, based on

exchanging messages in a publisher-sucscriber messaging patterns. Messages
will be defined in terms of data structures with fixed semantics. We provide a

first definition of a set of such data structures. We note that the definition is
non-exhaustive and may be subject to change if the need arises during

integration and advances in the development of enablers for the TeamMate
demonstrators.

Thus, in this document the above mentioned will be elaborated in more detail.

In section 2 the software modules are specified and dedicated to their
corresponding enablers and the the teammate cooperation modes are

specified. Also the concept of Automation to human (A2H), as well as human
to automation (H2A) communication is explained. Section 3 contains the

Teammate global teammate architecture concept, an explanation of dataflow
within the software software construct and a clarification of stateflow

concerning the teammate car. Also protocols for communication are defined.
Subsequently in section 4 the API is defined in order to have common data

formats for interfacing the modules.
2

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 10 of 66

3 Global overview of the TeamMate system

 The TeamMate concept of cooperation

As pointed out by C. Sentouh and colleagues2, the human-machine

cooperation is a challenging problem since the introduction of automated
systems in the various fields of human activity, especially in the aviation and

automotive fields. According to Piaget (1977)3, we can assume the following
definition of cooperation: ”Cooperate in action is to operate in common, that

is to say, adjust with new operations, the operations performed by each
partner, it’s coordinate the operations of each partner in a single operating

system in which the acts themselves of collaboration constitute the integral
operations”. This leads us to the following questions, as pointed out by Hoc

and colleagues4:
 When to intervene to assist the driver?

 How to do it and at what degree?
 What the effect will this intervention on the driver?

 Finally, whom assign responsibility for the driving?

Sheridan5 gave the definition of ”Sharing control” where the human operator
and machine work together, simultaneously, to make or perform a task. There

can be also other possible definitions for alternate control, illustrated in the
following table, where one of the two agents is responsible of a function, and

either the human operator or the machine performs the function from time to
time (a change of active agent):

2 Chouki Sentouh, Jean-Christophe Popieul, Serge Debernard, Serge Boverie.
Human-Machine Interaction in Automated Vehicle: The ABV Project.

3 J. Piaget. “Etudes sociologiques” (3e ´ed). Geneve: Droz, 1977.
4 J.M. Hoc. Towards a cognitive approach to human-machine cooperation in
dynamic situations. International Journal of Human-Computer Studies,

Volume 54, Issue 4, April 2001, pp.509-540.
5 T.B. Sheridan. Telerobotics, automation, and human supervisory control.

Cambridge, MA: MIT Press, 1992.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 11 of 66

Table 1: different types of alternate controls.

Besides of this approach, there are also many experiments carried out on the

full automation of driving, including presentations of the Google Driverless Car
in 20106 and VisLab Driverless Car in 20137. These experiments aim to

demonstrate the full automation, where the driver is completely out of the
driving task. However, as highlighted by many works8, there can be the

paradox for which, when the autonomous system reaches its limits, it requires
to the human to take back the vehicle control (exactly the same human agent

regarded as “a problem” up to that time and completely out-of-the-loop).

The top-level objective of AutoMate is to develop, evaluate and demonstrate
the “TeamMate Car” concept as a major enabler of highly automated vehicles.

This concept consists of considering the driver and the automation as members
of one team that understand and support each other in pursuing cooperatively

the goal of driving safely, efficiently and comfortably from A to B.
As a consequence, in order to show how the enablers contribute to the

implementation of this concept, it is important to briefly explain why the
cooperation is needed, and how the human and the automation can support

6 J. Markoff. Google Cars Drive Themselves, in Traffic. The New York Times,

2010.

7 PROUD Car Test 2013. http://vislab.it/vislab-events-2/.
8 L. Bainbridge. Ironies of automation. Automatica, vol. 19, no. 6, pp. 775-

779, 1983.

http://vislab.it/vislab-events-2/

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 12 of 66

each other to create a safe, efficient and comfortable driving experience.
Therefore, the future generations of driver assistance systems (ADAS) and

autonomous functions (ADFs) must be developed to ensure a smooth action
of the controller continuously, while keeping the driver in-the-loop without

generating negative interference.

The AutoMate approach is based on the mutual complementarity between the
driver and the automation: this support is achieved through the cooperation

between the team members.

The cooperation is bidirectional: while the Automation to Human Cooperation
(A2H) is used to complement the human limits, the Human to Automation

Cooperation (H2A) is implemented to allow the driver to support the
automation to overcome its limits.

According to AutoMate concept, the cooperation is made of two types of
support: in perception and in action.

The complementarity between the driver and the automation is the conceptual
solution to compensate the reciprocal limitations, while the cooperation is how

the complementarity is implemented. In this context, AutoMate project has

integrated the problem of interaction with the driver, in the design process of
the system, by considering the task sharing and degree of freedom, authority,

level of automation and Human- Machine Interface (HMI).
Figure 1 shows how both the A2H and the H2A cooperation between Manual

mode and Automatic mode can be implemented in perception (state A and B)
and in action (state C and D).

Figure 2 shows the detailed implementation of this cooperation including a
Control Sharing mode.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 13 of 66

Figure 1: State machine that shows how the cooperation is implemented

Figure 2: State diagram of AutoMate Human Machine Cooperation.

With reference to the figure, there are four main states:

1. Manual Mode (MM)

OFF
Safe

Maneuver

(SM)

Manual Mode (MM)

Automation (AU)

Control Sharing (CS)

Request

Ready

Ready

Assisted

(warnings,

info, …)

Manual

Driving

Only

Request

Auto

Driving

Control

sharing

Trajectory planning ON

Lane recognition OFF

driver does not respond within TTM_Resp.

driver is impaired

driver is impaired

TM-system asks for sharing.

Front obstacles are present.

Trajectory planning is present.

Lane recognition OFF.

Perception too complicated.

Trajectory planning

is not present.

Safe path is OFF.

Lane recognition OFF.

Accelerator pedal

released.

Steering wheel

released.

TM asks for

supervision.

Accelerator pedal released

OR

Steering wheel released.

TM-system asks for

support.

Driver does

not accept

On-line risk-assessment ON.

Safe-path ON.

Trajectory planning is present.

Lane recognition ON.

Driver’s impairment OK.

Voper ≥ vTHR.

On-line risk-assessment OFF.

Safe-path OFF.

Trajectory planning OFF.

Driver’s impairment NOK.

Voper < vTHR

On-line risk-assessment ON.

Safe-path not accurate.

Trajectory planning may be not present.

Lane recognition OFF.

Driver’s impairment OK.

Perception not

accurate

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 14 of 66

2. Control Sharing (CS)
3. Automation (AU)

4. Safe Manoeuvre (SM)

In MM, the driver is fully responsible of both lateral and longitudinal driving
tasks, even if the machine-agent can provide assistance in terms of warning

and information. On the other way around, in the AM, the system is fully
responsible both lateral and longitudinal driving tasks (full automation);

however, the machine-agent can require the intervention of the human-agent
(take-over request, TOR in short), using appropriate strategies to take him/her

into the control-loop again, depending on the cognitive status. In the CSM, the
two types of control are separated: typically, the longitudinal task is under the

system responsibility, while the lateral task under the driver control.
Eventually, the last mode is an emergency shutdown (SMM), in which a

minimum risk manoeuvre is foreseen, by stopping it in an automatic manner
in case the driver is not responding to a TOR in order to preserve the safety of

the vehicle and its passengers.
In each of these four modes, different sub-modes have been defined, whose

transitions from one to another are represented by arcs, characterised by

different parameters, related to the vehicle (e.g. speed), to the external
situation (e.g. end secured path), to the driver status (e.g. drowsiness) and

finally to a controller state (e.g. system OK). The different transitions between
the block are reported in red in the figure on those arcs.

Every time the system starts in the MM block. When the driver wants more

support from the automation, s/he can make this request and, if the conditions
of transition are satisfied, the system can enter the AM block. If not, but there

are the conditions of a shared control, then the system goes into the CSM
block. Of course, the situation is highly dynamic, depending on the external

environment, as well as on the status of the driver and of the system.

 The enablers

The common global TeamMate architecture can be considered as a framework

that allows to understand how the enablers, integrated into the different
demonstrators, have a crucial role in the concrete implementation of the

concept and in the achievement of the TeamMate features.

This chapter describes the role of the enablers as a means to implement the
concept of cooperation.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 15 of 66

The enablers have different roles, which can be divided into three categories:
 Enablers of automation, i.e. Automated Driving Functions (ADFs) to

allow an effective automated driving - Enabler 4 (Adaptive driving
Manoeuvre Planning, Execution and Learning) and Enabler 5 (Online Risk

Assessment);

 Enablers of adaptive automation, i.e. systems and technologies
designed to allow a tailored and adaptive driving experience – Enabler 1

(Sensor and communication platform), Enabler 2 (Probabilistic Driver
Modelling and Learning), and Enabler 3 (Probabilistic Vehicle and

Situation Modelling);

 Enablers of cooperation, e.g. the systems that allow the cooperation

between the technological and the human agents – Enabler 6 (TeamMate
HMI)

Moreover, all enablers support the cooperation in one or both aforementioned

directions, i.e. A2H and H2A.

Table 2 shows the role and relevance of each enabler in the cooperation. The

role of the enablers developed in the different WP, and how they contribute to
the cooperation when integrated in the system architecture, is reported in the

table. These roles, also reported in D2.4, D3.5 and D4.4, have been merged
into a single table to understand the relationship between the enablers into

the TeamMate architecture.

Table 2: How the enablers in all WPs contribute to cooperation

WP ID Enabler
Enabler
Owner

Aim of the enabler

Direction of support

Automation to
Human

Human to
Automation

WP2

Enabler 1: Sensor and communication platform

E1.1

Driver monitoring
system with driver
state model for
distraction and
drowsiness

CAF

Sensors and models to
detect driver’s visual
distraction and
drowsiness detection
and classification

Enabler E1.1 is
needed to

implement a
support in
perception to
complement the
perception of the
driver about the

his/her state

E1.2 V2X communication BIT

To Allow the
communication
between the vehicle
and everything.

Enabler E1.2 is
needed to

implement a
support in
perception to
complement the

perception of the
driver about the
environment

Enabler 2: Probabilistic Driver Modelling and Learning

E2.1
Driver intention
recognition

OFF

To Classify the current
driver state, describe
the interdependencies
between the driver’s
state, type, behaviour

and environment and
predict the driver
intention

Enabler E2.1 is
needed to

implement a
support in
perception to

complement the
perception of the
driver about
his/her state

WP3
Enabler 3: Probabilistic Vehicle and Situation Modelling

E3.1
Situation and
vehicle model

DLR
OFF

To estimate the
dynamic vehicle and

Enabler E3.1 is
needed to

AutoMate Automation as accepted and trusted TeamMate to enhance traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 17 of 66

object state and

position

implement a

support in
perception to
complement the

perception of the
driver about the
situation and the
vehicle

E3.2 Driving task Model DLR

To define the driver’s

tasks to understand
the expected behaviour
(Paper Enabler)

Enabler E3.2 is
needed to

implement a
support in
action along
with E6.1

(Interaction
Strategy) to
provide the
driver with an
effective means
to interact with

the automation
in case of need.

.

Enabler 4: Adaptive driving Manoeuvre Planning, Execution and Learning

E4.1
Planning and
execution of safe
manoeuvre

ULM
VED

To plan the possible
manoeuvres and select
the most effective,
efficient and

comfortable.

Enabler E4.1 is
needed to
implement a

support in
action
to complement
the ability of the

driver to
intervene in case
of risk

AutoMate Automation as accepted and trusted TeamMate to enhance traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 18 of 66

E4.2
Learning of intention
from the driver

OFF
HMT

To learns the driver’s
intention to predict the
expected behaviour

Enabler E4.2 is

needed to
implement a
support in

perception
to complement
the ability of the
driver to assess
the risk in case
of risky

behaviour

Enabler 5: Online Risk Assessment

E5.1
Online risk
assessment

OFF

DLR
HMT

 To define a safety

zone where the vehicle
is not likely to collide
either with obstacles or
other vehicles
(according to the
prediction of their

future position).

Enabler E5.1 is
needed to
implement a
support in

perception
to complement
the ability of the
driver to assess

the risk

WP4

Enabler 6: TeamMate HMI

E6.1 Interaction Modality ULM

To define the best way
to allow the driver to

provide feedback to
the HMI

In perception
and in action
(negotiation-
based HMI)

to allow the driver
to answer the
request of support

of the automation

E6.2
TeamMate
multimodal HMI

REL

To show information on

different device and
through different
sebsorial channels, in

In perception
and in action

(warning-
based HMI)
either to inform

In perception
and in action
(negotiation-
based HMI)

AutoMate Automation as accepted and trusted TeamMate to enhance traffic safety and efficiency

31/10/2018 Named Distribution Only
Proj. No: 690705

Page 19 of 66

order to either infrom

the driver, explain
manouveìres and
situations, allow him to

interact with the
vehicle

the driver about

a potential risk
or to take the
control of the

vehicle

to ask the driver

either for support
in perception or in
action

E6.3 AR HMT

To show information on
the windshield to
improve their

comprehensibility (for
simulators only).

In perception
(warning-
based HMI)

to inform the
driver about a
potential risk

In perception

and in action
(negotiation-
based HMI)

to ask the driver
either for support
in perception or in
action

4 TeamMate functional Architecture

The intended Overall TeamMate functional-Architecture is presented in the

DOW as shown in Figure 3.

Figure 3 : Sketch of the intended overall TeamMate System architecture

The model-based architecture (illustrated in Figure 4) takes the fused data to
interpret and assess the vehicle, traffic situation and driver.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 21 of 66

Figure 4 : Sketch of the model-based architecture of decision modules

The vehicle & situation modelling components classifies complex traffic
situations and anticipates a sequence of likely spatial and temporal evolutions

of the world by using vehicle and situation models. Thereby, it will interact
with the driver model to incorporate possible interventions of the human

driver. The driver model & learning component will infer driver states and
intentions, which includes likely temporal evolutions of states and intentions.

As behaviours and preferences vary across drivers, a learning component is
included. It uses the inputs the driver makes or the behaviour shown by the

driver to update the driver model. This ensures that the driver state prediction
is well adapted to the individual driver.

The adaptive driving manoeuvres planning, execution and learning component

takes the input, state and intentions of the driver and the current situation
state as input.

Based on these data, potential strategic manoeuvres are identified and

planned up to a concrete action sequence on an operational level. The resulting
plans include a suitable task distribution plan between driver and automation.

The manoeuvre planning component includes a learning algorithm that takes
the behaviour of the driver and driver’s responses to proposed manoeuvre

plans as input. Based on this data the component learns and improves
manoeuvre plans and recognizes driver’s preferences for certain manoeuvre

plans. The online risk assessment component defines a safety corridor based
on the current state of the driver (e.g. distraction) and the state of the

situation (including an anticipated sequence of likely spatial and temporal
evolutions). The safety corridors are continuously monitored and updated in

order to respond to a critical development of the driver or situation state.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 22 of 66

Figure 5 :Sketch of manoeuvre planning architecture

Based on the online risk assessment, the manoeuvre planning component
selects suitable manoeuvres to be proposed to the driver. Depending on the

planned task sharing the manoeuvre planning component executes the tasks
that are assigned to the automation.

The TeamMate HMI provides intuitive bidirectional communication

mechanisms between driver and automation. The driver can communicate with
the automation via different modalities, e.g., touch input. The TeamMate HMI

fuses the input from these modalities and interprets it based on stored
personalized, multi-modal communication preferences (“concurred

abbreviations”). The interpreted driver input is then passed on to Enabler 2
and 4. Vice versa, the automation uses the HMI to communicate with the driver

via different modalities. For example, the HMI takes the manoeuvre plans
proposed by Enabler 4 and suggests these to the driver. It chooses a

communication strategy that again relies on stored personalized, multi-modal
communication preferences. The HMI does not only suggest this support to

the driver, but also selects and communicates information of the current
situation and driver state, which enables the driver to understand the rationale

behind the suggested support.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 23 of 66

Figure 6 : Sketch of TeamMate-HMI architecture

 Information exchange between enablers

The TeamMate ecosystem will be realized as a distributed application, where

the TeamMate components communicate by exchanging messages in a
publisher-sucscriber messaging pattern. More specifically, the TeamMate

ecosystem will be realized as a client-server model. Each component may act
as a server that provides services to other components. Simultaneously, each

component may act as a client by requesting services from other components.
Within the TeamMate ecosystem, services are defined in terms of the

communication of messages that encapsulate data structures with fixed
semantics. As communication protocol, we plan the use of the Transmission

Control Protocol (TCP), or if not feasible, the User Datagram Protocol (UDP).
Components may act in a time-triggered or event-triggered mode. In a time-

triggered mode, a component uses an internal schedule and timer to request
necessary information from other components. The information can be used

to proactively prepare the information that will be requested by other
components. In an event-triggered mode, a component only requests

information from other components to provide a service requested by another
component.

A template for the development of components, providing the necessary

functionality for communication between components will be prepared for the
TeamMate Extension SDK.

 Dataflow diagram and Enablers interconnection

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 24 of 66

Within AutoMate all the data provided by the sensors, communication, the map
layer and vehicle data are put onto a TeamMate communication bus making

them available to all other components. From a functional point of view, the

sensor platform includes both the sensors themselves but also the data fusion
components. The data delivered by all types of sensors will be fused to provide

coherent, reliable information about the driver, environment and vehicle.
Furthermore, a communication platform will be developed, that connects the

components to the vehicle and allows all components to exchange data with
each other and to control the vehicle itself.

Figure 7: Current AutoMate system architecture

The current AutoMate system architecture is shown in Figure 7: Current

AutoMate system architecture. It illustrates the relations of the automate
enablers among each other and together with a given platform (vehicle or

simulator) during the second cycle. The depicted layout is kept close to the
current implementation while staying general enough to be applicable for all

demonstrators.

The AutoMate enablers support different functional steps: “data processing &
fusion”, “interpretation”, and “planning & actions” which are represented by

the corresponding sections. Each enabler is represented by a software
component dependent on their concerns. A message bus oriented data

Black box

Input Interpretation Planning & Actions Output Data Processing &
Fusion

Driver
Monitoring

E1.1

Vehicle Sensors

V2X
Communication

E1.2

MAP

CAN BUS

Automation
Functions

V2X

CAMERA
MIC

Driver Sensors

TOUCH
TEXT

User Input
Interaction
Modality

E6.1
Augmented Reality

E6.6

Central Display E6.4

Instrument Cluster
E6.2

HUD E6.7

ACTUATORS
LIGHT
SIGNALS

Car Output

Online Risk
Assessment

E 5.1
Planning and

Execution of safe
maneuver

E4.1

Situation and
Vehicle Model

E3.1

Learning of
intention from

driver

E4.2

Driver Intention
Recognition

E2.1

Audio HMI
E6.3

Ambient Lights E6.5

Existing Car/Simulator

SPEAKER
Acustic HMI

DASHBOARD
HMI

Visual HMI

…

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 25 of 66

exchange between the components is implied to support a communication via
one or more channels.

The existing vehicle or simulator may already have modules which also

perform one or more of the aforementioned functional steps, but the
TeamMate system does not need to know how these internal modules of the

platform work or interact. Thus, wide parts of the existing platform are
considered as a black box.

However, the simulator or the vehicle has to provide access to certain input
and output interfaces in order to enable the AutoMate system to receive

necessary data and to deliver processing results or to execute actions. Input
data from automation functions, maps, and vehicle sensor are at least

expected to be provided by the existing vehicle or simulator. Further inputs
introduced by the Teammate architecture are V2X data, driver sensor data,

and user input via touch or text interfaces. The TeamMate system can deliver
its output via acoustic and visual human-machine interfaces to the driver.

Further the existing platform is required to provide certain output interfaces,
for example to car actuators and light signals.

Inside the architecture there are several data flows that shall now be described
from the perspective of the enablers.

The Driver State Monitoring (E1.1) receives its data directly from sensors

related to the driver like a camera. The module infers the driver state in terms
of drowsiness and attentiveness and provides it as output data, which can be

consumed by other enablers. Currently it is used by HMI enablers (E6.x) like
the Instrument Cluster to trigger messages for the driver, e.g., to suggest a

transition to automatic mode.

The V2X Communication (E1.2) is directly connected to a V2X data receiver.
The received data is interpreted and made available for other enabler via the

aforementioned message bus. Currently the information is used to inform the
driver via one of the HMI enablers (E6.x) about certain conditions on the route

which might require a mode transition to manual or shared control.

The Situation and Vehicle Model (E3.1) receives its input data, e.g., map,
ego vehicle, other vehicle data via the message bus. The output data, an

interpretation of the traffic situation and a spatial and temporal prediction of
traffic participants within sensor range is then also made available via the bus.

Currently it is intended that this data is consumed by the Online Risk
Assessment and the Driver Intention Recognition.

The Driver Intention Recognition (E2.1) consumes data from the Situation

and Vehicle Model and from the car or simulator, which is received via the
message bus. The recognized intention probabilities, for example for a lane

change, are then returned to the bus and to the HMI enablers where the

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 26 of 66

intention of the driver can be visualized in order to inform the driver that the
TeamMate car is aware of his intention.

The Learning of intention from driver (E4.2) is closely related to the Driver
Intention Recognition (DIR). It receives data from the Situation and Vehicle

Model and from the car or simulator via the message bus. Additionally it has
also access to the driver model storage of the DIR. The enabler updates the

parameters of the DIR model based on observed evidence. After an update the
new model parameters are stored and the DIR is informed to reload its model

to operate with the new parameters.

The Online Risk Assessment (E5.1) consumes data from the Situation and
Vehicle Model and from the car or simulator. All data is again received via the

message bus. The generated output, safety corridors that quantify the safety
of the current and near-future traffic situation, is fed to the message bus.

Currently this output is consumed by the Planning and Execution of safe
maneuver in order to plan the trajectory and by HMI enablers, which can

combine this information with the output of the DIR to warn the driver if a
predicted intention would lead to an unsafe maneuver.

The Planning and Execution of safe maneuver (E4.1) receives its input

data from the car or simulator as well as the interpreted date from the Online
Risk Assessment via the message bus. It attempts to plan a trajectory which

is then provided to the output interface of the simulator or car so that the
vehicle can follow the planned path.

The HMI enablers (6.x) receive data from the car or the simulator in order

to present the current vehicle status. They also consume data from the VX2
Communication and the Driver State Monitoring and the output of the Driver

Intention Recognition and the Online Risk Assessment. Additionally they may
process data from the user input interfaces, e.g., text or touch. The output of

the HMI enablers is then directly provided to the driver via the corresponding
visual or acoustic interface.

5 Data flow, data structures

 Standards

To unify the interpretation of information, we will define the following
standards for time synchronization via timestamps and the use of coordinate

systems.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 27 of 66

5.1.1 Time synchronization

All time stamps are expected either in standard Universal Time Coordinated
(UTC) or a local time stamp, in milliseconds (ms). Each component providing

information containing time stamps must define whether UTC or local time is
used.

5.1.2 Coordinate systems

All coordinates are either expected in a global coordinate system based on

UTM coordinates or in a local coordinate system based on the car reference
system as defined in the norm ISO 8855 “Road vehicles - Vehicle dynamics

and road-holding ability - Vocabulary” using the location of the TeamMate
vehicle as origin. Each component providing information containing

coordinates must define whether a global or local reference frame is used.

 Data Structures

Information requested or provided by components is intended to make use of

the following data structures. Libraries implementing these data structures will
be prepared for the TeamMate Extension SDK.

5.2.1 Pose and motion of the TeamMate vehicle

Information about the position, orientation, and motion of the TeamMate

vehicle is stored in a data structure EgoState. For the EgoState, we define the
coordinates to follow the global UTM reference frame. The members of the

EgoState are defined in Table 3.

Table 3: The EgoState data structure.

Data Type Unit Description

TimeStandard uint_16 1 Indicator whether the time is
provided as UTC date and time

(0) or local (1)

Timestamp uint_64 ms Timestamp

CoordinateStandard uint_16 1 Indicator whether coordinates
are based on a global UTM

reference frame (0) or local
frame (1). For the EgoState,

only the global UTM reference
frame is accepted.

PositionX uint_16 m X-position of the centre of the

bounding box

PositionY float_64 m Y-position of the centre of the
bounding box

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 28 of 66

Heading float_64 rad Heading in respect to the x-

axis

VelocityX float_64 m/s Velocity in longitudinal
direction

VelocityY float_64 m/s Velocity in lateral direction

AccelerationX float_64 m/s² Acceleration in longitudinal

direction

AccelerationY float_64 m/s² Acceleration in lateral direction

YawRate float_64 rad/s Radial velocity

PoseMotionCovMat float_64[8][8] 1 Covariance matrix for pose and

motion

5.2.2 Pose, Motion, and dimension of detected objects

Information about a single object detected by the sensors of the TeamMate

vehicle is intended to be stored in a data structure Object, as defined Table 4.
The dimension of an objects is assumed to be represented as a two-

dimensional bounding box with width and length. All coordinates are defined
either in a global or local reference frame.

Table 4: The Object data structure.

Data Type Unit Description

ID uint_32 1 Unique object identifier

TimeStandard uint_16 1 Indicator whether the time is
provided as UTC date and time

(0) or local (1)

Timestamp uint_64 ms Timestamp

CoordinateStandard uint_16 1 Indicator whether coordinates
are based on a global UTM

reference frame (0) or local
frame (1). For the EgoState,

only the global UTM reference
frame is accepted.

PositionX uint_16 m X-position of the centre of the

bounding box

PositionY float_64 m Y-position of the centre of the

bounding box

Heading float_64 rad Heading in respect to the x-
axis

VelocityX float_64 m/s Velocity in longitudinal

direction

VelocityY float_64 m/s Velocity in lateral direction

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 29 of 66

AccelerationX float_64 m/s² Acceleration in longitudinal

direction

AccelerationY float_64 m/s² Acceleration in lateral direction

YawRate float_64 rad/s Radial velocity

PoseMotionCovMat float_64[8][8] 1 Covariance matrix for pose and
motion

Length float_64 m Length of the bounding box in
longitudinal direction

Width float_64 m Width of the bounding box in

lateral direction

LengthWidthCovMat float_64[2][2] 1 Covariance matrix for length
and width

Dynamic uint_16 1 Indicator whether the object

represents a static (0) or
dynamic (1) object

ExistenceProbability float_64 1 Confidence that the detected

object is existing.

5.2.3 Semantic annotation of detected objects

Information about detected objects may be annotated by additional

information defined in the data structure ObjectAnnotation (Table 5).

Table 5: The ObjectAnnotation data structure.

Data Type Unit Description

ID uint_32 1 Unique object identifier

TimeStandard uint_16 1 Indicator whether the time

is provided as UTC date and
time (0) or local (1)

Timestamp uint_64 ms Timestamp

SemanticClass uint_32 1 The semantic class of the
object.

SemanticClassProbability float_64 1 The probability that the

object belongs to the
stated semantic class.

AllowedManeuver uint_32[8] 1 Vector of manoeuvres the

object is allowed to
perform: Start (0),

FollowLane (1),
ChangeLane (3), TurnLeft

(4), TurnRight (5),
SlowDown (6), Stop (7).

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 30 of 66

AllowedManeuverProbability float_64 1 Probability for each

manoeuvre.

5.2.4 Prediction of the spatial and temporal evolution of detected

objects

Information about the spatial and temporal evolution of a detected object is
summarized in the data structure ObjectTrack, as defined in Table 6.

Table 6: The ObjectTrack data structure

Data Type Unit Description

ID uint_32 1 Unique object identifier

TimeStandard uint_16 1 Indicator whether the time is provided
as UTC date and time (0) or local (1)

Timestamp uint_64 ms Timestamp

Size uint_32 1 The number of entries in the ObjList

ObjList Object[Size] 1 A vector of Objects, specifying the

evolution of the object’s state at specific
points in time (as indicated by the

Object.Timestamp).

5.2.5 Digital Maps

Many components of the TeamMate vehicle, incl. driver-, vehicle-, and

situation-models, as well as online risk assessment will require high-accurate
topographic information about the geometry and semantic of the current and

future environment, incl. knowledge of roads, lanes, lane types, curbs, road
and lane markings, intersections, traffic lights and signals, speed limits etc.

Usually, such information is already available in autonomous vehicles in terms
of a digital map.

The digital map will be summarized in a data structure DigitalRoadMap. The

DigitalRoadMap is currently derived from harmonizing the different approaches
currently used in each demonstrator.

5.2.6 Safety corridors

Information about the area of collision-free travel estimated over a specific

temporal interval is summarized in the data structure SafetyCorridor, as
defined in Table 10, recursively using the 2DPoint (Table 7), Polyline (Table

8), and ObjectPolyline (Table 9) in the process.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 31 of 66

Table 7: The 2DPoint data structure.

Date Type Unit Description

X float_64 m X position

Y float_64 m Y position

Table 8: The Polyline data structure.

Data Type Unit Description

Size uint_16 1 Number of points in the

PointsArr

PointsArr 2DPoint[Size] 1 Vector of 2D Points

Table 9: The ObjectPolyline data structure.

Data Type Unit Description

Size uint_16 1 Number of polylines in
the PolylineList

Type uint_16 1 Indicator whether the

PolylineList is associated
with the lane boundaries

(0) or an object.

ID uint_32 1 Unique identifier

referring to the object ID
if the PolylineList is

associated with an
object.

PolylineList Polyline[Size] 1 Vector of polylines

Table 10: The SafetyCorridor data structure.

Date Type Unit Description

TimeStandard uint_16 1 Indicator whether the

time is provided as
UTC date and time (0)

or local (1)

TimestampStart uint_64 ms Timestamp indicating
the beginning of the
temporal interval 𝑡.

TimestampEnd uint_64 ms Timestamp indicating
the end of the
temporal interval 𝑡 +
Δ𝑡.

Size uint_16 1 Number of

ObjectPolylines
ObjectPolylineList

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 32 of 66

ObjectPolylineList ObjectPolyline[Size] 1 Vector of

ObjectPolylines
defining the safety

corridor over the
temporal interval
[𝑡, 𝑡 + Δ𝑡]

 Data interface

The data interface is defined by the set and structure of messages that

components provide to a requesting client.

5.3.1 Environment model

The environment model is assumed to be provided as a service by the sensor

and communication platform of a TeamMate vehicle. It consists of a static
environment model and a dynamic environment model.

5.3.2 Static environment model

The static model contains all measured and validated information about the
static scene, as defined in Table 11.

Table 11: Content of the message defining the static environment model.

Data Type Unit Description

TimeStandard uint_16 1 Indicator whether the
time is provided as UTC

date and time (0) or
local (1)

Timestamp uint_64 ms Timestamp

Size uint_16 1 Number of objects in the

StaticObjectList

StaticObjectList Object[Size] 1 Vector of objects
defining the state of all

static objects detected
by the TeamMate

vehicle

DigitalRoadMap DigitalRoadMap 1 The digital road map

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 33 of 66

5.3.3 Dynamic environment model

The dynamic model contains two different classes of information. First, it
contains the dynamically detected, classified and predicted objects. Secondly,

it contains the ego vehicle description.

Table 12: Content of the message defining the dynamic environment model.

Data Type Unit Description

TimeStandard uint_16 1 Indicator whether the

time is provided as UTC
date and time (0) or

local (1)

Timestamp uint_64 ms Timestamp

Size uint_16 1 Number of objects in the
DynamicObjectList

DynamicObjectList Object[Size] 1 Vector of objects
defining the state of all

dynamic objects

detected by the
TeamMate vehicle.

EgoState EgoState 1 EgoState defining the
state of the TeamMate

vehicle.

5.3.4 Evolution of the traffic scene

The evolution of the traffic scene is a service expected to be provided by
components/enablers implementing driver-, vehicle-, and situation models. It

consists of a semantic annotation of sensor data and a probabilistic prediction
of the spatial and temporal evolution of objects detected by the TeamMate

vehicle.

5.3.4.1 Semantic annotation

The semantic annotation augments the dynamic objects with additional

semantic information. The semantic prediction will be provided by the following
table.

Table 13: Content of the message defining the semantic prediction

Date Type Unit Description

TimeStandard uint_16 1 Indicator whether
the time is provided

as UTC date and time
(0) or local (1)

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 34 of 66

Timestamp uint_64 ms Timestamp

Size uint_16 1 Number of objects in

the ObjectList and
the

ObjectAnnotationList

ObjectList Object[Size] 1 Vector of objects
defining the state of

all objects for which a
semantic annotation

is available.

ObjectAnnotationList ObjectAnnotation[Size] 1 EgoState defining
the state of the

TeamMate vehicle.

5.3.4.2 Probabilistic prediction

The probabilistic prediction defines the estimated evolution of the traffic scene.

Table 14: Content of the message defining the probabilistic prediction

Data Type Unit Description

TimeStandard uint_16 1 Indicator whether
the time is

provided as UTC
date and time (0)

or local (1)

Timestamp uint_64 ms Timestamp

Size uint_16 1 Number of

elements in the

ObjectTrackList

ObjectTrackList ObjectTrack[Size] 1 Vector of

ObjectTracks
defining the

temporal and
spatial evolution of

the state of objects
detected by the

TeamMate vehicle

5.3.5 Safety corridor

The safety corridor defines a region in which the TeamMate vehicle can travel
safely, i.e., with an upper-bound on the probability of a collision with the road

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 35 of 66

boundaries or other traffic participants. Safety corridors are provided by
components/enablers for online risk assessment.

Table 15: Content of the message defining the probabilistic prediction

Data Type Unit Description

TimeStandard uint_16 1 Indicator whether
the time is

provided as UTC
date and time (0)

or local (1)

Timestamp uint_64 ms Timestamp

CoordinateStandard uint_16 1 Indicator whether
coordinates are

based on a global
UTM reference

frame (0) or local
frame (1).

Size uint_16 1 Number of safety

corridors in the
SafetyCorridorList

SafetyCorridorList SafetyCorridor[Size] 1 Vector of

SafetyCorridors
over adjacent

temporal intervals,
defining a joint

safety corridor
over a prediction
horizon [𝑡, 𝑡 +
SizeΔ𝑡]

5.3.6 Planned Trajectory

The planned trajectory defines the planned trajectory of the TeamMate vehicle
and is provided by components/enablers for trajectory planning and execution.

Table 16: Content of the message defining the planned trajectory.

Data Type Unit Description

TimeStandard uint_16 1 Indicator
whether the

time is provided
as UTC date and

time (0) or local
(1)

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 36 of 66

Timestamp uint_64 ms Timestamp,

specifying the
creation date of

the trajectory

CoordinateStandard uint_16 1 Indicator
whether

coordinates are
based on a

global UTM
reference frame

(0) or local
frame (1).

Size uint_16 1 Number of

points and
associated

timestamps in
the Trajectory

and
TimestampList

Trajectory 2DPoint[Size] 1 Vector of

2DPoints
defining the

planned
trajectory

TimestampList uint_64[Size] ms Vector of

timestamp
corresponding

to each 2DPoint
in the Trajectory

5.3.7 Driver’s state

5.3.7.1 Drowsiness

This message regroups fields associated with driver’s drowsiness.
The “Drowsiness State” and “Drowsiness Level” fields are both about the level

of alertness/sleepiness of the driver; simply “Drowsiness Level” is a continuous
variable with values between 0 and 1, whereas “Drowsiness State” is a discrete

integer variable identifying 4 state of drowsiness. The confidence variable is
about the reliability of both drowsiness field.

Frame rate: ~1 Hz.

Table 17: Content of the Drowsiness message

Data Type Unit Range Description

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 37 of 66

timestamp Uint64 ms 0… Current UTC time

Drowsiness
State

Int32 1 0..4

0 = unknown,

1=alert, 2=slightly drowsy,
3=drowsy, 4=sleepy,

Drowsiness

Level
Float 1 0..1

0 -->Fully alert; 1-->Maximum

Sleepiness

Confidence
Level

Float 1 0..1
0 = no confidence, 1 = full
confidence

Microsleep

Event
Int32 1 0, 1

0 = No micro sleep event, 1 = Micro

sleep event

5.3.7.2 Visual attention fast

This interface is directly related to driver’s eyes and head gaze, and is thus

published at a video-rate frequency.
Frame rate: ~30 Hz.

Table 18: Content of the Visual Attention Fast message

5.3.7.3 Visual attention slow

This message regroups fields associated with driver’s visual attention.
The level of visual attention is a continuous variable with values between 0

and 1, whereas state of visual attention is a discrete integer variable
identifying 3 state of attention. The confidence variable rates both fields.

Frame rate: ~2 Hz.

Data Type Unit Range Description

timestamp
Uint6

4
ms 0… Current UTC time

Observed areas Int32 1 0..7

0 = UNKNOWN // Unknown area
1 = ON-Road // looking ahead at the

road
2 = OFF-Road

3 = LR // Left rear view Mirror area
4 = RR // Right Rear view

5 = CR // Central Rear view mirror
6 = IC // Instrument cluster

7 = CD // Central Display

Confidence

Level
Float 1 0..1 0 = no confidence, 1 = full confidence

Look Time
Uint3
2 ms 0…

Time the driver has been continuously
looking at the current instrument.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 38 of 66

Table 19: Content of the Visual Attention slow message

Data Type Unit Range Description

timestamp Uint64 ms 0… Current UTC time

Visual Time

Sharing

Float 1 0..1
Ratio of attention time ON-ROAD/ (OFF-

ROAD+ON-ROAD)

Confidence

Level
Float 1 0..1 0=no confidence, 1=full confidence

Attention
State

Int32 1 0..5

0 = unknown,

1=Attentive, 2=Mid attention ,
3=Distracted

Attention

Level
Float 1 0..1 0 -->Fully attentive; 1-->Distracted

Confidence
Level

Float 1 0..1 0 = no confidence, 1 = full confidence

5.3.7.4 Cognitive distraction

This message regroups fields associated with driver’s cognitive distraction.
The Level of cognitive distraction and state of cognitive distraction fields are

both about the level of Cognitive Distraction function The level of cognitive
distraction is a continuous variable with values between 0 and 1, whereas state

of cognitive distraction is a discrete integer variable identifying 3 levels of
Cognitive Distraction. The confidence variable rates both fields.

Frame rate: ~1 Hz.

Table 20: Content of the Cognitive Distraction message

Data Type Unit Range Description

timestamp Uint64 ms 0… Current UTC time

Cognitive

Distraction State
Int32 1 0..5

0 = unknown,
1=Not distracted, 2= mid

distraction, 3= fully distracted

Cognitive
Distraction Level

Float 1 0..1 0-->Fully alert; 1-->Maximum

Confidence Level Float 1 0..1
0 = no confidence, 1 = full

confidence

5.3.7.5 Driver’s state raw-data

This message contains the data provided by the face tracker.

Frame rate: ~30 Hz.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 39 of 66

Table 21: Content of the driver’s-state Raw-data message

Data Type Unit Range Description

Timestamp Uint64 ms 0… Current UTC time

headPos Float3 m 3D Position of head in meters

headPosQ Float 1

0..1

Head position quality: (0.0 = no head
tracking, 0.1 = Face Detection, 0.2 = Face

Refinder, 0.2..1.0 = Head Tracking).

headYaw Float ° Head heading angle in degrees

headPitch Float ° Head pitch angle in degrees

headRoll Float ° Head roll angle in degrees

headRotQ Float 1 0..1 Head rotation quality

gazeSrc Float3 m

3D Position of origin of gaze vector, in

meters. This is the consensus of the values
for both eyes.

gazeDir Float3 1

Unit vector giving the gaze direction in 3D

(average of both eyes)

gazeQ Float 1 0 .. 1 Quality of gaze origin & direction

leftEyeOpen Float mm
0…

The distance between the eyelids of the left
eye

leftEyeOpenQ Float 1 0..1 Quality of left eye opening

rightEyeOpen Float mm
0…

The distance between the eyelids of the
right eye

rightEyeOpenQ Float 1 0..1 Quality of right eye opening

5.3.8 Online Learning from the Driver

The Online Learning from the Driver loads the initial model of the Driver

Intention Recognition and updates the model parameters during driving based
on the sensory input received. The required input for learning is the same as

for the Driver Intention Recognition meaning the initial model, environment
data from the static and the dynamic environment model (track-objects,

vehicle data). If an updated version of the Driver Intention Recognition model
is ready it is signalized via the output message. The Intention Recognition can

then load the updated model parameters.

Table 22: Online learning from the driver

Date Type Unit Description

updateReady Uint_16 1 Flag to signalize that a model update is ready

modelLocation String 1 Path to updated model

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 40 of 66

5.3.9 Component Communication Framework

Within AutoMate, the different demonstrators make use pf pre-existing
middleware solutions that provide their own dedicated SDKs for the integration

of enablers and communication. Where applicable, enabler providers will make
use of such pre-existing SDKs to expedite the integration process.

For a more general solution, HMT is currently developing a framework for

communication as a part of the TeamMate SDK, called the component
framework. The component framework is implemented in C++ and allows

(external) developers to embed their enablers into C++ components with pre-
implemented functionality for communication.

The primary building block within the component framework is that of a

component, which acts as a template that implements all necessary
functionalities for communication in which an enabler can be embedded. Based

on a client-server model, components may act as servers by providing services
to other components (in terms of messages), or as clients, by requesting these

services from other components.

Components can have multiple inputs and (optionally) a single output. Each

input can be connected to the output of a single other components, while each
output may be connected to multiple inputs. A component provides a primary

execute method that can be used to read all current inputs and produce a new
output. Components are executed periodically, with each component being

allowed to work at its own frequency. Components are organized in component
sets that will be executed as a single unit.

By now, we prepared three types of components to facilitate different use

cases:
 Reader components have a set of input but no output. Such components

can be used, e.g., by enablers that write data from the network into a
database.

 Writer components have a single output but no input. Such components
can be used, e.g., by enablers that read data from a database to serve

it to other components.
 Lastly, reader/writer components combine the abilities of the reader and

writer components by providing a set of inputs and a single output.

In addition to the above, the component communication framework also
supports standalone inputs and outputs that can be integrated into existing

codebases to enable communication between components and different
middlewares.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 41 of 66

Figure 8 shows an exemplary utilization of the component framework,
consisting of five components, organized in two separate component sets. The

first component set consists of two writer components, that generate

messages, e.g., by retrieving data from a database, and periodically send their
outputs over the network. The second component set consists of three

components, a reader-writer and two reader components. The reader/writer
component reads from its inputs at its own frequency and produces output to

be consumed by the two reader components, writing the received data into a
database and displaying it via a graphical user interface.

Figure 8: Exemplary realization of a network of components.

The component framework supports both TCP/IP and UDP communication,
implemented using the Boost ASIO framework. Messages can be serialized

using Boost Serialization or Google’s protobuf to enable communication with
software written in languages other than C++.

Figure 9 shows an exemplary communication pattern for a reader/writer

component receiving messages (M) from two connected server components at
its inputs. As messages may arrive asynchronously based on the sending

components internal frequencies, they are put into a message queue. As soon
as the components execution period starts, it can read from its inputs. When

this happens, the component receives the most current message available
(displayed in red) on each input, while all previous messages will be discarded

(displayed in black). The enabler embedded within the component can then
process the messages to produce its own output (O) and distribute it to its

own clients.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 42 of 66

Figure 9: Example of communication within the component communication
framework.

General remarks: These descriptions will be translated into protobuf
messages in order to enricgh the 2nd cycle API and provide a global API

including all the exchanged information between the TeamMate system and
its host car and between all the enablers constituting the architecture of our

system, since we are in subscriber/publisher functioning mode there is no
need to define the message chart diagram, since suscribers have to pay

attention to the timestamp of the data exchanged in order to precess it.

6 The TemMate API for the second cycle

In this section VED propose a definition of the general API of the TeamMate
system. This API is extracted from the main inputs of the TemMate architecture

shown in the section 4. We describe the exchanged information between the
system and the sensors in order to define the TeamMate system functional

and ready to be integrated in a specific car.

Several solutions could be used to fulfill these requirements but to be able to
provide to third party a way to interoperate with other enablers or sensors all

messages are defined using protobuf protocol9. In this way, the enablers could
be defined in any language (C/C++, JAVA …), in that way we have a

convenient way to integrate TemMate system messages in their
implementations.

9 https://github.com/protocolbuffers/protobuf
9https://developers.google.com/protocol-buffers/

https://github.com/protocolbuffers/protobuf
https://developers.google.com/protocol-buffers/

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 43 of 66

The communicatiuon between the TemMate system and the host
vehicle/simulator can follow the description g_iven in the section 5.3.9. If the

host vehicle owner has a specific middlware it is on ist own responsability to

adapt the right wrappers in ordert o make the syemet or a part of the
TeamMate system communiucate with the different sensors and low level

organes oft he vehicle.

To define the requested messages for the TeamMATE system, we rely on
discussions between AutoMATE partners in charge on enabler definitions

specified during different workshops of integration (Ulm University (ULM),
Paris1 (VED), Versailles1 (VED), Paris2 (VED), and Versailles2 (VED) which

took place during the demonstrators definition.

The first defined messages are about the information requested by the
enablers to operate computations, their main topics are the environment

definition in terms of static and dynamic informations and the ego-vehicle
state.

The Ego-vehicle data message

The first requested message deals with the ego-vehicle state. Several
informations have been requested as defined in the following table.

Name Type Units Comments

timestamp Long

(64 bits)

Ms Expressed since 01/01/1970-00:00:00

rear_axle_center_x Float

(32 bits)

M X-coordinate of the Rear Axle Center

Expressed in the UTM referential

rear_axle_center_y Float

(32 bits)

M Y-coordinate of the Rear Axle Center

Expressed in the UTM referential

rear_axle_center_x_std Float

(32 bits)

M Standard deviation of the X-

coordinate of the Rear Axle Center

Expressed in the UTM referential

rear_axle_center_y_std Float

(32 bits)

M Standard deviation of the Y-

coordinate of the Rear Axle Center

Expressed in the UTM referential

vehicle_width Float

(32 bits)

M The width of the Ego-Vehicle

vehicle_height Float

(32 bits)

M The height of the Ego-Vehicle

vehicle_heading Float

(32 bits)

degree The heading of ego-vehicle defined

from North, clockwise

vehicle_heading_std Float

(32 bits)

degree Standard deviation of the heading of

ego-vehicle, clockwise

vehicle_speed_x Float

(32 bits)

m.s-1 The longitudinal component of ego-

vehicle velocity

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 44 of 66

vehicle_speed_y Float

(32 bits)

m.s-1 The lateral component of ego-vehicle

velocity

vehicle_speed_norm Float

(32 bits)

m.s-1 The euclydian norm of ego-vehicle

velocity

vehicle_yaw_rate Float

(32 bits)

degree.s-1 The yaw rate of ego-vehicle

steering_angle Float

(32 bits)

degree The steering angle of ego-vehicle

front wheels

The protobuf translation of the previous table is he following:

package eu.automate.openapi.messages;

message EgoVehicleMessage {

 required int64 timestamp = 10; //

expressed in milliseconds since 01/01/1970-00:00:00

 required float rear_axle_center_x = 20; //

expressed in meters

 required float rear_axle_center_y = 21; //

expressed in meters

 required float rear_axle_center_x_std = 30; // standard

deviation, expressed in meters

 required float rear_axle_center_y_std = 31; // standard

deviation, expressed in meters

 required float vehicle_width = 40; //

expressed in meters

 required float vehicle_height = 41; //

expressed in meters

 required float vehicle_heading = 50; //

expressed in degree, from North, clockwise

 required float vehicle_heading_std = 51; // standard

deviation, expressed in degree

 required float vehicle_speed_x = 60; //

expressed in meters per seconds

 required float vehicle_speed_y = 61; //

expressed in meters per seconds

 required float vehicle_speed_norm = 62; //

euclydian norm, expressed in meters per seconds

 required float vehicle_yaw_rate = 70; //

expressed in degrees per seconds

 required float steering_angle = 80; //

expressed in degrees

 // extensions 100 to 199;

}

In addition to the ego-vehicle state, some enablers need also information
about the surrounding environment. Two kinds of information define the

surrounding environment of the ego-vehicle, such that static information which
typically refers to the definition of the road network near the vehicle and

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 45 of 66

dynamic information corresponding to the different surrounding obstacles and
temporary modifications on the static layer (the road).

Static message is built according to information provided by a third party map
system, where we only preserve information about the current road element

and the ones defined in the current defined journey. All of this correspond to
an elongated road with or without intersections.

Dynamic information come from the preception layer of the TeamMate vehicle,

it mainly deals with surrounding obstacles.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 46 of 66

The Map message

Name Type Units Comments

id Long

(64 bits)

- A unique ID for this map definition

nbLanes Integer

(32 bits)

- The maximum number of lanes

right_lane_info LaneInfo

(see below)

- Road information about the left lane

middle_lane_info LaneInfo

(see below)

- Road information about the middle

lane

left_lane_info LaneInfo

(see below)

- Road information about the right

lane

The map is defined as a succession of waypoints. For each waypoints in the
map, we provide several information related to the driving lane.

Name Type Units Comments

availability Boolean - A unique ID for this map definition

center_x Float

(32 bits)

m The maximum number of lanes

center_y Float

(32 bits)

m Road information about the left

lane

half_width Float

(32 bits)

m Road information about the middle

lane

mandatory_speed_limit Float

(32 bits)

m.s-1 Road information about the right

lane

right_marking Integer

(32 bits)

[0 – 1] 0 if dashed marking, 1 if

continuous marking, -1 otherwise

left_marking Integer

(32 bits)

[0 – 1] 0 if dashed marking, 1 if

continuous marking, -1 otherwise

road_heading Float

(32 bits)

degree expressed from North, clockwise

The protobuf message translation merging these two tables is the following:

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 47 of 66

package eu.automate.openapi.messages;

message MapMessage {

 required int32 id = 1; // An unique ID

 required int32 nbLanes = 2; // The number of

available lanes

 message LaneInfo {

 required bool availability = 1; // True if exists,

False otherwise

 required float center_x = 10; // The center of

lane x-coordinate, expressed in meters (UTM referential)

 required float center_y = 11; // The center of

lane y-coordinate, expressed in meters (UTM referential)

 required float half_width = 20; // The half width

of lane, expressed in meters

 required int32 mandatory_speed_limit = 30; // The mandatory

speed limit at this position expressed in kilometers per hours

 required int32 right_marking = 40; // = 0 if dashed

marking, = 1 if continuous marking

 required int32 left_marking = 41; // = 0 if dashed

marking, = 1 if continuous marking

 optional float road_heading = 50; // expressed in

degree, from North, clockwise

 }

 required LaneInfo right_lane_info = 10;

 required LaneInfo middle_lane_info = 20;

 required LaneInfo left_lane_info = 21;

 // extensions 100 to 199;

}

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 48 of 66

The objects message

The last mandated message for the environment is about obstacles as below.

Name Type Units Comments

id Long

(64 bits)

- A unique ID for this list of

obstacles

timestamp Long

(64 bits)

ms Expressed since 01/01/1970-00:00:00

nbObjects Integer

(32 bits)

- The number of detected obstacles

object_info ObjectInfo[] - The characteristics of each

detected objet

And an ObjectInfo is defined as:

Name Type Units Comments

id Long

(64 bits)

int A unique id per obstacle

relative_position_x Float

(32 bits)

m The x-coordinate center of bounding box

Expressed in the ego-vehicle referential

relative_position_y Float

(32 bits)

m The y-coordinate center of bounding box

Expressed in the ego-vehicle referential

relative_uncertainty_p_

[xx, xy yx, yy]

Float * 4

(32 bits)

m The uncertainty matrix of relative

position of center of bounding box

relative_velocity_x Float

(32 bits)

m.s-1 The longitudinal component of the object

velocity

Expressed in the ego-vehicle referential

relative_velocity_y Float

(32 bits)

m.s-1 The lateral component of the object

velocity

Expressed in the ego-vehicle referential

relative_uncertainty_v_

[xx, xy yx, yy]

Float * 4

(32 bits)

m.s-1 The uncertainty matrix of relative

velocity of center of bounding box

absolute_position_x Float

(32 bits)

m The x-coordinate center of bounding box

Expressed in the UTM referential

absolute_position_y Float

(32 bits)

m The y-coordinate center of bounding box

Expressed in the UTM referential

absolute_uncertainty_p_

[xx, xy yx, yy]

Float * 4

(32 bits)

m The uncertainty matrix of absolute

position of center of bounding box

absolute_velocity_x Float

(32 bits)

m.s-1 The longitudinal component of the object

velocity

Expressed in the UTM referential

absolute_velocity_y Float

(32 bits)

m.s-1 The lateral component of the object

velocity

Expressed in the UTM referential

absolute_uncertainty_v_

[xx, xy yx, yy]

Float * 4

(32 bits)

m.s-1 The uncertainty matrix of absolute

velocity of center of bounding box

yaw Float

(32 bits)

degree the orientation of the bounding box

Expressed in the ego-vehicle referential

yaw_std Float

(32 bits)

degree The standard deviation of orientation

width Float

(32 bits)

m The visible width of the object

height Float

(32 bits)

m The visible height of the object

width_std Float

(32 bits)

m The standard deviation of width

height_std Float m The standard deviation of height

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 49 of 66

(32 bits)

label Integer

(32 bits)

-

(cf.

IBEO)

The classification result, same as IBEO

label_score Float

(32 bits)

[0, 1] The score of classification

existence_probability Float

(32 bits)

[0, 1] The existence probability

The following protobuf message of the obstacles is the following:

package eu.automate.openapi.messages;

message ObjectMessage {

 required int32 id = 1; // An unique ID

 required int64 timestamp = 10; // expressed in

milliseconds since 01/01/1970-00:00:00

 required int32 nbObjects = 20; // the number of objects

in this message

 message ObjectInfo {

 required int32 id = 1; // An unique ID

 required float relative_position_x = 10; // The x-coordinate

center of bounding box, expressed in meters (Vehicle referential)

 required float relative_position_y = 11; // The y-coordinate

center of bounding box, expressed in meters (Vehicle referential)

 required float relative_uncertainty_p_xx = 20; // The (0,0)-coordinate

of uncertainty matrix of relative position of center of bounding box

 required float relative_uncertainty_p_xy = 21; // The (0,1)-coordinate

of uncertainty matrix of relative position of center of bounding box

 required float relative_uncertainty_p_yx = 22; // The (1,0)-coordinate

of uncertainty matrix of relative position of center of bounding box

 required float relative_uncertainty_p_yy = 23; // The (1,1)-coordinate

of uncertainty matrix of relative position of center of bounding box

 required float relative_velocity_x = 30; // The x-coordinate

center of bounding box, expressed in meters (Vehicle referential)

 required float relative_velocity_y = 31; // The y-coordinate

center of bounding box, expressed in meters (Vehicle referential)

 required float relative_uncertainty_v_xx = 40; // The (0,0)-coordinate

of uncertainty matrix of relative velocity of object

 required float relative_uncertainty_v_xy = 41; // The (0,1)-coordinate

of uncertainty matrix of relative velocity of object

 required float relative_uncertainty_v_yx = 42; // The (1,0)-coordinate

of uncertainty matrix of relative velocity of object

 required float relative_uncertainty_v_yy = 43; // The (1,1)-coordinate

of uncertainty matrix of relative velocity of object

 required float absolute_position_x = 110; // The x-

coordinate center of bounding box, expressed in meters (UTM referential)

 required float absolute_position_y = 111; // The y-

coordinate center of bounding box, expressed in meters (UTM referential)

 required float absolute_uncertainty_p_xx = 120; // The (0,0)-

coordinate of uncertainty matrix of absolute position of center of bounding box

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 50 of 66

 required float absolute_uncertainty_p_xy = 121; // The (0,0)-

coordinate of uncertainty matrix of absolute position of center of bounding box

 required float absolute_uncertainty_p_yx = 122; // The (0,0)-

coordinate of uncertainty matrix of absolute position of center of bounding box

 required float absolute_uncertainty_p_yy = 123; // The (0,0)-

coordinate of uncertainty matrix of absolute position of center of bounding box

 required float absolute_velocity_x = 130; // The x-

coordinate center of bounding box, expressed in meters (UTM referential)

 required float absolute_velocity_y = 131; // The y-

coordinate center of bounding box, expressed in meters (UTM referential)

 required float absolute_uncertainty_v_xx = 140; // The (0,0)-

coordinate of uncertainty matrix of absolute velocity of object

 required float absolute_uncertainty_v_xy = 141; // The (0,0)-

coordinate of uncertainty matrix of absolute velocity of object

 required float absolute_uncertainty_v_yx = 142; // The (0,0)-

coordinate of uncertainty matrix of absolute velocity of object

 required float absolute_uncertainty_v_yy = 143; // The (0,0)-

coordinate of uncertainty matrix of absolute velocity of object

 required float yaw = 200; // The orientation

of the bounding box expressed in degree (Vehicle referential)

 required float yaw_std = 201; // The standard

deviation of orientation

 required float width = 210; // The width of the

object, expressed in meters

 required float height = 211; // The height of

the object, expressed in meters

 required float width_std = 220; // The standard

deviation of width

 required float height_std = 221; // The standard

deviation of height

 optional int32 label = 230; // The

classification result, same as IBEO

 optional float label_score = 231; // The score of

classification, in [0, 1]

 optional float existence_probability = 240; // The existence

probability, in [0, 1]

 }

 repeated ObjectInfo object_info = 100;

}

The next defined messages are the standardized output of enablers requested
to be able to interoperate all together and provide the interface requested in

order to switch from one specific implementation to another.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 51 of 66

The trajectory message

Trajectory messages are generateed by the MotionPlanning enabler, it provide
a list of waypoint, these waypoints are used by the controller which translate

the waypoints and the curcature into control variables (acceleration, bracking
and steering).

Name Type Units Comments

N Long

(64 bits)

- A unique ID for this generated

trajectory

global_timestamp Long

(64 bits)

ms The expected time to reach the 1st way

point

Expressed since 01/01/1970-00:00:00

waypoint_info WayPointInfo[] - The characteristics of each waypoint

And a waypoint is defined as below:

Name Type Units Comments

time_to_reach Long

(64 bits)

- The expected time the ego-vehicle

reach the position

relative_position_x Float

(32 bits)

m The x-coordinate way point,

Expressed in the vehicle referential

relative_position_y Float

(32 bits)

m The y-coordinate way point,

Expressed in the vehicle referential

absolute_position_x Float

(32 bits)

m The x-coordinate way point,

Expressed in the UTM referential

absolute_position_y Float

(32 bits)

m The y-coordinate way point,

Expressed in the UTM referential

package eu.automate.openapi.messages;

message TrajectoryMessage {

 required int32 N = 1; // number of way points

 required int64 global_timestamp = 10; // expected time to reach

the 1st way point

 message WayPointInfo {

 required int64 time_to_reach = 1; // An unique ID

 required float relative_position_x = 10; // The x-coordinate way

point, expressed in meters (Vehicle referential)

 required float relative_position_y = 11; // The y-coordinate way

point, expressed in meters (Vehicle referential)

 required float absolute_position_x = 110; // The x-

coordinate way point, expressed in meters (UTM referential)

 required float absolute_position_y = 111; // The y-

coordinate way point, expressed in meters (UTM referential)

 }

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 52 of 66

 repeated WayPointInfo waypoint_info = 100;

}

For more details on the other messages and enablers present in the API please
download the full version on the repository of the project in the folder:

/Workpackage Documents/WP5-TeamMate Architecture System Integration and

Implementation/Deliverables/D5.1/New/OpenAPI

See the appendix for more details about the username and password for the
connection.

 Commuinication of the TeamMate car with its envirennement: the

V2X related standards

This subsection introduces the architecture and the standards of

communication of the TeamMate car with the surrounding environment.
Indeed we dealk in this section with the ETSI TC ITS reference architecture

using [1]. The reference architecture gives an overview about the applied V2X
communication in the project. Then the details of the standards and their

application in the project are discussed using [2][3] and [4].

Figure 10. ETSI TC ITS reference architecture

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 53 of 66

6.1.1 ETSI TC ITS V2X Reference Architecture

ETSI TC ITS has defined a reference architecture as shown in Figure 10, which
is similar to the U.S. architecture. The reference architecture has layered

structure, where each layer has its own dedicated tasks following ISO Open
System Interconnection (OSI) model. The reference architecture is based on

a slightly modified IEEE 802.11p at the access layer. It enables new
networking functionalities based on geographical addressing at the network

layer, and new facilities layer on top that allows a set of rich messages, which
support different types of applications. Compared to the U.S. ITS architecture,

the ETSI TC ITS architecture includes more features at the network layer to
support further communication scenarios, such as multi-hop forwarding. The

functionalities of the facilities layer are very similar in both architectures as
most of them have been initially defined by the U.S. standard, and then

adopted and slightly modified by the EU standard (ETSI).
V2X is intended to enable critical safety applications first, where vehicles and

road infrastructure cooperate by exchanging real-time information to be used
for the prediction and the avoidance of accidents and, thus, to improve road

safety. This type of application requires fast communication. Once the

technology is deployed, it will also allow new traffic efficiency applications, as
well as useful infotainment and added-value applications. The technology will

support also the autonomous driving application, as it is important for an
autonomous vehicle to communicate with other self-driving vehicles around it

to negotiate the sharing of the road resources.
These applications require well-defined messages that could provide all of the

required information in an efficient and reliable manner. ETSI TC ITS has been
working on defining key messages at the facilities layer, such as cooperative

awareness messages (CAM) and decentralized environmental notification
messages (DENM). The CAM is intended to be sent by each vehicle at least

once every second and at most 10 times per second, based on the vehicle
dynamics. Each CAM message includes a list of information about the location

and status of the vehicle. The CAM exchange enables each vehicle to build a
local map about all vehicles in the surrounding. While CAM is a proactive

message, the DENM is a reactive message and triggered by an event, e.g.,
when planned road maintenance is going on, a DENM generation mechanism

is triggered by the road operator to initiate the related DENM informing all
vehicles within the relevant geographical area about the roadwork. As

mentioned some messages like DENM need to be disseminated within a limited
geographical area and to support, that there was a need to enable new

dissemination algorithms at the transport and network layers. The
GeoNetworking functionalities at the network layer of the ETSI TC ITS have

been introduced to support geographical-based routing mechanisms where a
packet is forwarded based on geographical addressing schemes that use

geospatial coordinates.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 54 of 66

6.1.2 Decentralized environmental notification message

Decentralized environmental notification message supports road safety
applications by informing all vehicles within an area of relevance about road

hazard [2]. As mentioned, DENM is a reactive message, and it is typically
triggered by an event. The DENM generation and broadcast can be initiated by

the road operator directly (e.g., planned road maintenance starts in an area)
or by a vehicle that notice such event using its sensors (e.g., icing on the

road). In the project, road works warning message will be used in the Martha
scenario as use case specific DENM.

The following figure depicts the general structure of decentralized
environmental notification message.

Figure 11. General structure of DENM [2]

The message is structured with a header and data containers. Each container

is extensible to support potential extension of the DENM content for future ITS
application needs.

The ITS PDU header is a common header for all ITS message types. It includes
among others the protocol version, message ID and station ID. It also contains

the information about how should threat the ITS station the message. For
DENM the GeoBroadcast functionality of the GeoNetworking protocol is used.

It supports multi-hop packet forwarding in order to route the DENM from the
source to the defined geographical destination area.

The management container container is mandatory and shall be present in all
transmitted DENM. This container contains information for the DENM protocol

operation using several parameters:
 actionID is composed of the station ID of the detecting ITS-S and a

sequence number. The concept of the this parameter is introduced as
the event identifier. An actionID enables a receiving ITS-S to distinguish

an event detected by different ITS stations, or different event detected
by the same ITS-S.

 referenceTime is the parameter that enables the distinction of different
DENM updates about one event.

 termination allows the receiving ITS-S to derive the DENM type. If

present in DENM, it includes two values i.e., cancellation DENM or
negation DENM.

 validityDuration parameter indicates the end of a DENM validity. It may
be used to indicate an estimated or preset duration of the event

persistence, in case such duration is known in advance. This parameter

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 55 of 66

may not be present in a DENM, in case the detecting ITS-S is not able
to provide the event duration information. In this case, a default value

is set by ITS-S for internal protocol operation.

 transmissionInterval is present in DENM when facilities layer forwarding
is activated. It indicates the time interval of DENM transmission at the

originating ITS-S.
The situation container contains event type information and an indicator of the

event detection performance. Each event type is identified with an integer type
event code. This list of event codes is extensible. The event type is composed

of two data elements, namely the cause code and sub-cause code. The cause
code is 3 and the sub-cause code is 3 or 4 in case of road works warning.

The location container includes information that describes the location
referencing information at the event position. The location referencing

information for DENM is a list of traces. Each trace is composed of a list of
waypoints that construct a path approaching to the event position. This

location referencing information enables receivers to estimate its relevance to
the event, by comparing its own itinerary path to each trace contained in the

received DENM. In addition, the location container may also include
information that represents the detection history of a plain event (e.g., an

extreme weather condition event), if the same event was detected by a moving
vehicle along its travel path in the past.

The à la carte container contains additional information that is not provided by
other containers. This container provides the possibility for ITS-S application

to include application specific data in a DENM. All information included in the
à la carte container is optional. They shall be present when the data is provided

by the ITS-S application.
For example, roadWorks container may be added for the roadwork use case

as specified in ETSI TS 101 539-1 [3]. It includes information of the roadwork
zone and specific access conditions:

 CauseCode: 3 in case of roadwork.
 SubCauseCode: 3 or 4 in case of roadwork.

 RoadworkSegmentDescriptor: this parameter contains the geographic
position of the start of roadwork areas and the stop of roadwork area.

 RoadworkClosedLanes: it describes the total number of lanes,
identification of closed lanes according to vehicles types.

 SpeedLimits: it presents the regulatory speed limits per remaining open
lane and according to vehicle types.

 AuthorizedVehicleTypes: this optional parameter contains the list of
authorized vehicle types.

 RecommendedItinerary: this optional parameter contains the list of
waypoints to re-access a road, which is closed on a given segment.

Besides the latter two parameters, all the others are mandatory in the
roadWorks container.

The ASN.1 unaligned PER encoding rules are used for DENM encoding and
decoding, in order to optimize the message size.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 56 of 66

 Third party HMI SDK specification

This section is dedicated to the description of thethird party SDK developed in
the field of the project and the description of the used protocols and standards

of the V2X communication.

Indeed, In Automate, we will develop SDKs to allow third parties re-using the
data extracted from the TeamMate car (about the vehicle, the environment

and the driver) and develop their own applications based on this data.

Thanks to the installation of an IoT embedded device of DQUID10, the real-
time information about the vehicle, the environment and the driver (available

on the CAN bus) will be extracted, elaborated and made available. The SDKs
developed in the Automate project will be used to seamlessly create new

mobile applications that exploit this data.

An example of a potential application is the re-use of driving data by an
insurance company. In fact, it could use the real-time information to identify

the driving behaviour and then associate the risk of the driver (to optimize the
driver's profile). These systems are already available11 and could be further

improved by the introduction of the Automate SDK.

This approach is in line with the EU strategy about the re-use of available data
to strengthen the EU economy and creation of an innovation ecosystem.

6.2.1 DQuid SDK definition

A data exchange protocol (from now on called “DQuid protocol”) has been

defined to share data between the DQuid SDK - integrated into the mobile
application - and the DQuid Stack - integrated into the application running

on the vehicle (as shown in Figure 12).

10 www.dquid.com
11 http://www.gruppoac.it/insurance-gestione-crash-driving-behaviour-profilazione-driver/

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 57 of 66

Figure 12: DQuid SDK high-level architecture

The mobile application (Android / iOS) links to the DQuid SDK framework that

is in charge of establishing a communication with the embedded device on a
specific link (e.g. BLE) and exchange data over this link.

The DQuid SDK provides the following features:

 Discovery of the devices embedding the DQuid Stack
 Connection/Disconnection to/from a specific embedded device (one

connection at a time)
 Connection/Disconnection notification

 Definition of object’s properties (DQSignal) with attributes (size, type,
readable/writable). These properties must also be specified in the

embedded firmware application integrating the DQuid Stack.
 Properties’ read/write

 Properties’ Subscribe/Unsubscribe
 Properties’ update notification (in case of property subscription).

The DQuid Stack provides the following features:

 Definition of object’s properties (DQSignal) with attributes (size, type,
readable/writable). These properties must also be specified in the mobile

application integrating the DQuid SDK.
 Properties’ Subscribe/Unsubscribe

 Notify the embedded application when a request of a write operation for
a property is received by the DQuid SDK.

 Property’s value update (DQSignal)

The embedded device installed on the vehicle integrating the DQuid Stack is
represented in the DQuid SDK as a DQuidObject with one or more properties

(DQSignal).

The mobile application can

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 58 of 66

 read/write the DQuidObject’s properties (Figure 13)
 subscribe to all DQuidObject’s properties in order to receive notifications

when properties data are updated by the embedded device (Figure 14).

Figure 13: Write the DQuidObject’s properties

Figure 14: Subscribe/update the DQuidObject’s properties

DQuidObject’s properties are defined by the mobile application developer

toward the DQuid SDK, and the properties are stored in JSON format (a sample
is shown in Figure 15.

In order to implement the communication with the vehicle, the DQuid SDK

provides a module for the CAN signal properties management.

Every CAN signal in a CAN message is translated into a DQSignal property.
DQSignals properties of type CAN have additional attributes to store specific

CAN signal data needed to extract signal’s information from the CAN message:
 Start Bit

 Length
 CAN message ID

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 59 of 66

 CAN channel ID

DQuid SDK provides a method to parse the CAN db (Vector format .dbc) and

automatically populate the properties’ JSON file with all CAN signals and
messages stored into the DBC.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 60 of 66

Figure 15: Example of the structure of the properties in JSON

As regards the DQuid SDK, it provides the following features linked to the CAN

Module:
 .dbc database parsing and automatic creation of the DQSignal properties

with all attributes (Start Bit, Length, CAN message ID, CAN channel ID).
 Subscription/Unsubscription of CAN signals (properties’ names are in the

form «CANMessage.CANSignal»). For each CAN signal, it allows to
define:

o the transmit rate of each property from the DQuid Stack to the

DQuid SDK
o the way the signal is elaborated between consecutive BLE

transmissions (LAS, AVERAGE, MIN, MAX). This elaboration is
allowed only for 32bits unsigned signals.

 Subscription/Unsubscription of CAN messages (properties’ names are in
the form «CANMessage»). For each CAN message, it allows to define the

transmit rate of each property from the DQuid Stack to the DQuid SDK.
 CAN signal/message update notification for all subscribed signals. The

DQuid SDK applies the proper offset and scale factor to provide the CAN
signal physical value to the mobile application.

 CAN message write
o Optionally, it allows to define the CAN message transmit rate (on

the CAN network)
o It allows to update the payload of the CAN message transmitted

over the CAN network.

On the other hand, for the DQuid Stack, it provides the following features
linked to the CAN Module:

 CAN signals subscribe/unsubscribe notification
 CAN messages subscribe/unsubscribe notification

 It automatically updates the DQuid SDK with the subscribed CAN
signal/message data according to the periodicity specified during

subscription.
 It automatically elaborated the CAN signal value according to the

configuration specified by the DQuid SDK during subscription.
 CAN signal/messages update: the DQuid Stack provides a method the

embedded application can invoke when a CAN message is received from
the CAN network. The Stack will then manage the update of all

subscribed properties (CAN signals) embedded in the CAN message.
CAN message transmission on the CAN network: the transmission rate is

defined by the configuration received by the DQuid SDK

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 61 of 66

7 Conclusion

In this deliverable D5.1, we presented the global AutoMATE System
architecture, showing that it works on all demonstrators of the Automate

project considering their different initial architectures. In addition, we refined
the functional blocks of the TeamMate Car, including their interconnections

and the data flow between them. In this way, we have also formally specified
the system architecture, including the technical details/enablers of the three

demonstrator platforms we are using: driving simulators provided by ULM, REL
and VED; prototype vehicles provided by ULM, CRF and VED. An explanation

of dataflow within the software construct and a clarification of stateflow
concerning the teammate car is given as well.

Another important part is the definition of interfaces between the modules, as

well as common data formats standards and communication protocols.
Therefore, the TeamMate Application Programming Interface (API) has been

defined in terms of principles, standards, interfaces and data structure that
enable the communication of information between components in the

TeamMate ecosystem. Thus, we presented a common design principle for the
communication between components in the TeamMate ecosystem, based on

exchanging messages in a publisher-sucscriber messaging patterns. Messages
are defined in terms of data structures with fixed semantics. We provided a

first definition of a set of such data structures. It is worth to note here that the
definition is non-exhaustive and may be subject to change if the need arises

during integration and advances in the development of enablers for the
TeamMate demonstrators.

Finally, in this document, we have also described the TeamMate Extension

Standard Development Kit (SDK) for third party applications and hardware
(smartphones, tablets, etc.)– at least in a first version – that are based on the

TeamMate Car framework and the requirements from WP1. The SDK, together
with the API, allow third parties to build new components or to replace or

adjust TeamMate components. Therefore, the SDK provide the necessary
libraries and APIs (e.g. for communication bus access), compilers and runtime

environments (e.g. for testing).

This document consituttes the basis for the description of the baseline cars
(deliverable D5.2) and of the first implementation of the TeamMate cars in the

three demonstrateors with a specific focus on the deployment (deliverable
D5.3), as well as the refinement of the TeamMate System Architecture

(including API) in the 3rd project cycle (deliverable D5.4) which will include:
(1) the enablers architecture, (2) the final API for the teammate system.

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 62 of 66

8 References

[1] E. B. Hamida, H. Noura and W. Znaidi, "Security of Cooperative
Intelligent Transport Systems: Standards, Threats Analysis and

Cryptographic Countermeasures", Electronics 2015, 4, pp. 380-423
[2] ETSI EN 302 637-3 V1.2.1 – ITS Basic Set of Applications; Part 3:

Specifications of Decentralized Environmental Notification Basic Service
(2014-09)

[3] ETSI TS 101 539-1 V1.1.1 – ITS V2X Applications; Part 1: Road Hazard
Signalling (RHS) application requirements specification (2013-08)

[4] Campolo, C., A. Molinaro, and R. Scopigno, “Vehicular ad hoc Networks.
Standards, Solutions, and Research”, Springer, 2015, ISBN: 978-3-319-

15496-1

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 63 of 66

Appendix 1

This appendix aims to show examples of fragmetns of code generated for the
API of the TeamMate architecture.

The resulting codes and the API are regularly updated and uploaded on the

project repository.

https://vprojects.offis.de/predict/ajaxplorer

 Username : reviewer

 Password : Te4mM@te

under the following folder

/Workpackage Documents/WP5-TeamMate Architecture System Integration and

Implementation/Deliverables/D5.1/New/OpenAPI

Example of JAVA code generation

package eu.automate.openapi.messages;

public final class MapMessageOuterClass {

 private MapMessageOuterClass() {}

 public static void registerAllExtensions(

 com.google.protobuf.ExtensionRegistry registry) {

 }

 public interface MapMessageOrBuilder extends

 // @@protoc_insertion_point(interface_extends:eu.automate.openapi.messages.MapMessage)

 com.google.protobuf.MessageOrBuilder {

 /**

 * <code>required int32 id = 1;</code>

 *

 * <pre>

 * An unique ID

 * </pre>

 */

 boolean hasId();

 /**

 * <code>required int32 id = 1;</code>

 *

 * <pre>

 * An unique ID

 * </pre>

 */

 int getId();

 /**

 * <code>required int32 nbLanes = 2;</code>

 *

 * <pre>

 * The number of available lanes

 * </pre>

 */

 boolean hasNbLanes();

https://vprojects.offis.de/predict/ajaxplorer

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 64 of 66

 /**

 * <code>required int32 nbLanes = 2;</code>

 *

 * <pre>

 * The number of available lanes

 * </pre>

 */

 int getNbLanes();

 /**

 * <code>required .eu.automate.openapi.messages.MapMessage.LaneInfo right_lane_info = 10;</code>

 */

 boolean hasRightLaneInfo();

 /**

 * <code>required .eu.automate.openapi.messages.MapMessage.LaneInfo right_lane_info = 10;</code>

 */

 eu.automate.openapi.messages.MapMessageOuterClass.MapMessage.LaneInfo getRightLaneInfo();

 /**

 * <code>required .eu.automate.openapi.messages.MapMessage.LaneInfo right_lane_info = 10;</code>

 */

 eu.automate.openapi.messages.MapMessageOuterClass.MapMessage.LaneInfoOrBuilder

getRightLaneInfoOrBuilder();

 /**

 * <code>required .eu.automate.openapi.messages.MapMessage.LaneInfo middle_lane_info = 20;</code>

 */

 boolean hasMiddleLaneInfo();

 /**

 * <code>required .eu.automate.openapi.messages.MapMessage.LaneInfo middle_lane_info = 20;</code>

 */

 eu.automate.openapi.messages.MapMessageOuterClass.MapMessage.LaneInfo getMiddleLaneInfo();

 /**

 * <code>required .eu.automate.openapi.messages.MapMessage.LaneInfo middle_lane_info = 20;</code>

 */

Example of C++ code generation

// MapMessage.h

// Generated by the protocol buffer compiler. DO NOT EDIT!

// source: MapMessage.proto

#ifndef PROTOBUF_MapMessage_2eproto__INCLUDED

#define PROTOBUF_MapMessage_2eproto__INCLUDED

#include <string>

#include <google/protobuf/stubs/common.h>

#if GOOGLE_PROTOBUF_VERSION < 2006000

#error This file was generated by a newer version of protoc which is

#error incompatible with your Protocol Buffer headers. Please update

#error your headers.

#endif

#if 2006001 < GOOGLE_PROTOBUF_MIN_PROTOC_VERSION

#error This file was generated by an older version of protoc which is

#error incompatible with your Protocol Buffer headers. Please

#error regenerate this file with a newer version of protoc.

#endif

#include <google/protobuf/generated_message_util.h>

#include <google/protobuf/message.h>

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 65 of 66

#include <google/protobuf/repeated_field.h>

#include <google/protobuf/extension_set.h>

#include <google/protobuf/unknown_field_set.h>

// @@protoc_insertion_point(includes)

namespace eu {

namespace automate {

namespace openapi {

namespace messages {

// Internal implementation detail -- do not call these.

void protobuf_AddDesc_MapMessage_2eproto();

void protobuf_AssignDesc_MapMessage_2eproto();

void protobuf_ShutdownFile_MapMessage_2eproto();

class MapMessage;

class MapMessage_LaneInfo;

// ===

class MapMessage_LaneInfo : public ::google::protobuf::Message {

 public:

 MapMessage_LaneInfo();

 virtual ~MapMessage_LaneInfo();

 MapMessage_LaneInfo(const MapMessage_LaneInfo& from);

 inline MapMessage_LaneInfo& operator=(const MapMessage_LaneInfo& from) {

 CopyFrom(from);

 return *this;

 }

 inline const ::google::protobuf::UnknownFieldSet& unknown_fields() const {

 return _unknown_fields_;

 }

 inline ::google::protobuf::UnknownFieldSet* mutable_unknown_fields() {

 return &_unknown_fields_;

 }

 static const ::google::protobuf::Descriptor* descriptor();

 static const MapMessage_LaneInfo& default_instance();

 void Swap(MapMessage_LaneInfo* other);

 // implements Message --

 MapMessage_LaneInfo* New() const;

 void CopyFrom(const ::google::protobuf::Message& from);

 void MergeFrom(const ::google::protobuf::Message& from);

 void CopyFrom(const MapMessage_LaneInfo& from);

 void MergeFrom(const MapMessage_LaneInfo& from);

 void Clear();

 bool IsInitialized() const;

 int ByteSize() const;

 bool MergePartialFromCodedStream(

 ::google::protobuf::io::CodedInputStream* input);

 void SerializeWithCachedSizes(

 ::google::protobuf::io::CodedOutputStream* output) const;

 ::google::protobuf::uint8* SerializeWithCachedSizesToArray(::google::protobuf::uint8* output) const;

 int GetCachedSize() const { return _cached_size_; }

 private:

 void SharedCtor();

 void SharedDtor();

 void SetCachedSize(int size) const;

 public:

 ::google::protobuf::Metadata GetMetadata() const;

AutoMate Automation as accepted and trusted TeamMate to enhance

traffic safety and efficiency

31/10/2018 Named Distribution Only

Proj. No: 690705

Page 66 of 66

 // nested types --

 // accessors ---

 // required bool availability = 1;

 inline bool has_availability() const;

 inline void clear_availability();

 static const int kAvailabilityFieldNumber = 1;

 inline bool availability() const;

 inline void set_availability(bool value);

 // required float center_x = 10;

 inline bool has_center_x() const;

 inline void clear_center_x();

 static const int kCenterXFieldNumber = 10;

 inline float center_x() const;

 inline void set_center_x(float value);

 // required float center_y = 11;

 inline bool has_center_y() const;

 inline void clear_center_y();

 static const int kCenterYFieldNumber = 11;

 inline float center_y() const;

 inline void set_center_y(float value);

 // required float half_width = 20;

 inline bool has_half_width() const;

 inline void clear_half_width();

 static const int kHalfWidthFieldNumber = 20;

 inline float half_width() const;

 inline void set_half_width(float value);

 // required int32 mandatory_speed_limit = 30;

 inline bool has_mandatory_speed_limit() const;

 inline void clear_mandatory_speed_limit();

 static const int kMandatorySpeedLimitFieldNumber = 30;

 inline ::google::protobuf::int32 mandatory_speed_limit() const;

 inline void set_mandatory_speed_limit(::google::protobuf::int32 value);

 // required int32 right_marking = 40;

 inline bool has_right_marking() const;

 inline void clear_right_marking();

 static const int kRightMarkingFieldNumber = 40;

 inline ::google::protobuf::int32 right_marking() const;

 inline void set_right_marking(::google::protobuf::int32 value);

 // required int32 left_marking = 41;

 inline bool has_left_marking() const;

 inline void clear_left_marking();

 static const int kLeftMarkingFieldNumber = 41;

 inline ::google::protobuf::int32 left_marking() const;

 inline void set_left_marking(::google::protobuf::int32 value);

 // optional float road_heading = 50;

 inline bool has_road_heading() const;

 inline void clear_road_heading();

 static const int kRoadHeadingFieldNumber = 50;

 inline float road_heading() const;

 inline void set_road_heading(float value);

