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1 Introduction 

The concept of the TeamMate car requires solutions to monitor, understand, 
assess, and anticipate the driver, the vehicle, and the overall traffic situation. 
In AutoMate these solutions will be provided by driver-, situation- and 
vehicle models.  
 
Driver models provide estimations of the hidden state, intentions and 
behavior of the human driver. As such, they can be used to provide the 
TeamMate car with information about the current state of the driver, e.g. 
whether he is distracted or tired and predict the current intentions and future 
behavior in the case of manual control, or predictions of potential driver 
intentions in the case of autonomous control. 
 
Situation models serve the purpose to derive and represent a coherent 
snapshot of the current state of the world, i.e. the traffic environment, from 
the (usually noisy) sensor measurements provided by the sensor and 
communication platform in terms of LIDAR signals, GPS coordinates, video 
images, digital maps, etc. Such a world state should be understood as the 
observable physical traffic situation, including e.g. the future course of the 
road, and the position, velocities and accelerations of all surrounding traffic 
participants.  
 
Whereas the situation models provide a static snapshot of the current traffic 
situation, vehicle models will be used to predict the future state and behavior 
of the different traffic participants. This can include both abstract models to 
predict the behavior of surrounding traffic participants, e.g. treating them as 
“lifeless” objects in space that retain their current direction and velocities, 
and more elaborate physical models of the TeamMate car as a means to 
predict the physical effects of potential control actions, needed e.g. for the 
planning of safe trajectories in the case of autonomous control or for 
assessing the risk of predicted behavior of the human driver. 
 
Together driver-, situation- and vehicle models will enable the TeamMate car 
to reconstruct a coherent representation of the overall state of the world, 
including the ability to estimate likely spatial and temporal evolutions 
necessary for safe planning and control of autonomous control actions. The 
driver-, vehicle- and situation models will be developed using various 
modelling techniques. In the following sections the different models will be 
described as a basis for the definition of required metrics and measures for 
model validation. 
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1.1 Driver Models 

To design and evaluate functionalities for automated driving which involve 
the human driver, a deep understanding of the driving task itself is urgently 
needed. Human models, especially cognitive models, can give fine-grained 
insight into specific situations, but are very costly to build and require a large 
scale effort to achieve a usable outcome. In AutoMate, the partners will 
therefore focus on other modelling techniques, which are based on Dynamic 
Bayesian Networks and Task Analysis. 

1.1.1 Probabilistic Driver Models for Intention Recognition and 
Behavior Prediction  

In AutoMate, a probabilistic driver model will be developed that enables the 
TeamMate car to create estimations about the intentions and future behavior 
of the human driver. The model will be based on previously developed 
hierarchical and modular probabilistic architectures for probabilistic driver 
models for behavior generation and prediction and intention recognition: 
Bayesian Autonomous Driver Mixture-of-Behaviors (BAD MoB) models and 
Driver Intention Recognition (DIR) models. In AutoMate, these models will be 
combined in a unified architecture and integrated with vehicle- and situation 
models to allow the recognition and prediction of driver states, behavior and 
intentions. 
 
BAD MoB models (Eilers and Möbus, 2014) attempt to describe the statistical 
relations between observable control actions of human drivers2  and the 
perceptual input available via ambient and foveal vision proposed in the 
psychological literature, like e.g. bearing and splay angles, and information 
derived from the optical flow for lateral control (Land and Tatler, 2009; Li 
and Chen 2010; Li and Cheng, 2011), or time-to-x and tau measures for car-
following (Lee, 1976; Van Winsum, 1999). The general driving task has been 
described as a hierarchical structured task with three levels of skills and 
control (Michon, 1985): the strategical (or planning), manoeuvring (or 
tactical), and control (or operational) levels. At the strategic level the general 
planning of a journey is handled, e.g. the driver chooses the route and 
evaluates resulting costs and time consumption. At the manoeuvring level, 
the driver has to identify and select appropriate manoeuvres based on 
his/her current perception of the traffic situation, e.g. turning at an 
intersection or initiating a lane change. Lastly - at the control level - the 
driver has to execute simple (and for experienced drivers mostly 

                                   
2  By now steering wheel angles and combined acceleration-braking pedal positions as control actions are 
considered. For AutoMate, it may be necessary to replace these by more abstract signals, e.g. the yaw rate and 
longitudinal acceleration. 
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autonomous) sensor-motor programs or perception-action patterns, which 
taken together form a manoeuvre or specific behavior on the next level. An 
example is turning the wheel to remain in the middle of the lane. BAD MoB 
models cover the manoeuvring and control level of Michon’s three-layered 
architecture (Michon, 1985). They rely on the assumption that complex 
human driving behavior can be hierarchically decomposed into simpler 
behaviors and - vice versa - that complex human driving behavior can be 
generated by a sequence and/or mixture of simpler behaviors.  
 
The basic idea of BAD MoB models is best described by a simple example for 
lateral control on motorways, where it is assumed that the overall lateral 
control can be decomposed into a set of four simpler behaviors: lane-
following, car-following and lane-changes to the adjacent left resp. right 
lanes. Let 𝐴 denote a discrete random variable that represents the lateral 
control actions of the human driver, i.e. the steering wheel angle, and 
𝑷 = 𝑃!,… ,𝑃!!  denote a set of discrete random variables that represent the 
hypothetical perceptual input required for lateral control. Representing the 
set of simpler behaviors by a discrete random variable 𝐵  with Val 𝐵 =
lane following, car following, lane change left, lane change right , it is assumed that for 

a given set of perceptual evidence 𝑷 = 𝒑 , the resulting input-dependent 
conditional probability distribution (CPD) over steering wheel angles 𝑃 𝐴|𝒑  
can be described in terms of a mixture model: 
 

𝑃 𝐴|𝒑 = 𝑃 𝐵 = 𝑏!|𝒑  𝑃 𝐴|𝐵 = 𝑏! ,𝒑
!!∈Val(!)

. 

 
Here, each probability 𝑃 𝐵 = 𝑏!|𝒑  can be interpreted as the likelihood to 
perform a corresponding simpler behavior 𝐵 = 𝑏! for the given situation as 
encoded by the perceptual evidence 𝑷 = 𝒑, while each CPD 𝑃 𝐴|𝐵 = 𝑏! ,𝒑  can 
be understood as an expert that provides the likelihood of different control 
actions in order to realize the corresponding behavior. As such, a BAD MoB 
model combines aspects of both the manoeuvring level (manoeuvre, resp. 
behavior selection) and control level (realization of manoeuvres resp. 
behaviors in terms of motor programs) of Michon’s hierarchy (Michon, 1985) 
in a unified probabilistic architecture.  
 
For a more formal description, BAD MoB models can be seen as variants of 
Hierarchical Markov Decision Trees (Jordan et al., 1997), an extension of 
Hierarchical Mixture-of-Experts (Jordan and Jacobs, 1994) for modelling 
temporal processes, over both discrete and continuous random variables. Let 
𝑨 = 𝐴!,… ,𝐴!!  denote a set of continuous and/or discrete random variables 
that represent the control actions of the human driver, 𝑩 = 𝐵!,… ,𝐵!!  
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denotes a set of discrete variables that represent different behaviors and 
intentions on the manoeuvring layer, 𝑷 = 𝑃!,… ,𝑃!!  denotes a set of 
continuous and/or discrete random variables that represent the hypothetical 
perceptual input of the human driver. Additionally, let Δ denote a delay 
between perception and action due to perception and reaction times, usually 
in the range of 0.5 to 1.0s. A BAD MoB model is then realized as a 
(conditional) Dynamic Bayesian Network (DBN), defined as a pair ℬ!,ℬ→ , 
where ℬ!  is a (conditional) Bayesian Network that represents an initial 
conditional probability density 𝑝 𝑨!,𝑩!|𝒑!!! , and under the assumption of 
first order Markov and time invariance, ℬ→ is a 2-time-slice Bayesian network 
that represents a transition model 𝑝 𝑨! ,𝑩!|𝑨!!!,𝑩!!!,𝒑!!! . For any desired 
time span 𝑇 ≥ 1 , the conditional joint density distribution over 
𝑝 𝑨!:! ,𝑩!:!|𝒑!!!:!!!  is defined as an unrolled (conditional) Bayesian Network, 
where, for any 𝑋! ∈ 𝑨 ∪ 𝑩, the structure and distributions of 𝑋!! are the same 
as those for 𝑋!! in ℬ!, and the structure and distributions of 𝑋!! for 𝑡 > 1 are 
the same as those for 𝑋!! in ℬ→: 
 

𝑝 𝑨!:! ,𝑩!:!|𝒑!!!:!!! = 𝑝 𝑨!,𝑩!|𝒑!!! 𝑝 𝑨! ,𝑩!|𝑨!!!,𝑩!!!,𝒑!!! .
!

!!!

 

 
As illustrated in Figure 1, each CPD in ℬ! and ℬ→ of the BAD MoB model is 
associated with a tree-like structure that defines the hierarchical 
decomposition of the CPD into a set of experts. Each CPD in the context tree 
represents an expert for the associated region of the input space. Lastly, 
each CPD in the tree-structure is realized as an internal model that 
approximates the CPD by a (conditional) Bayesian network, called a 
component-model. The parameters and structure of component-models can 
be learned from multivariate time-series of behavior traces via machine-
learning methods. By now, the learning algorithms require complete 
datasets, i.e. datasets without missing values, which makes it necessary to 
annotate datasets with the (usually hidden) labels of the underlying 
behaviors. 
 
In the recently finished project “Holistic Human Factors and System Design 
of Adaptive Cooperative Human-Machine Systems” (HoliDes3), BAD MoB 
models have been used as a starting point for the development of Driver 
Intention Recognition (DIR) models. DIR models rely on the assumption that 
the intentions and manoeuvres of the driver can be seen as a hidden process 
that “emits” observable effects on the traffic situations. 
 

                                   
3 http://www.holides.eu/ 
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Figure 1: Exemplary overview of the hierarchical and modular architecture for 
Bayesian Autonomous Driver Mixture-of-Behaviors (BAD MoB) models. Dark nodes 
indicate that the model does not provide any distributions for the associated 
variable. 

 
Examples for such observable effects are control actions of the driver, the 
position of his/her vehicle, physical relations to surrounding traffic 
participants, etc. For the creation of the DIR model, the dependence of 
behaviors and action variables on the past perception was replaced by a 
more traditional sensor model. Let 𝑶 = 𝑂!,… ,𝑂!!  denote a set of continuous 
and/or discrete random variables that represent the observations of the 
current traffic situations, a DIR model would therefore model the joint 
density distributions over actions, behaviors and observations over an 
arbitrary length 𝑇 ≥ 1 as: 
 

𝑝 𝑨!:! ,𝑩!:! ,𝑶!:! = 𝑝 𝑶!|𝑨!,𝑩! 𝑝 𝑨!,𝑩! 𝑝 𝑶!|𝑨! ,𝑩! 𝑝 𝑨! ,𝑩!|𝑨!!!,𝑩!!! .
!

!!!

 

 
In AutoMate, the aim is combining BAD MoB and DIR models in a coherent 
probabilistic architecture for probabilistic driver models that can be used for 
intention recognition and behavior prediction. Such models will be 
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constructed for specific use cases and be used to recognize and predict the 
intentions and behaviors of drivers in these use cases. For this, a mechanism 
to predict the future evolution of the traffic scene is required. Within 
AutoMate this will be provided by the vehicle- and situation models. If such a 
situation representation is detailed enough to derive the potential perceptual 
input available to vehicles in the vicinity of the TeamMate car, it should be 
possible to use BAD MoB models representing yet to be defined groups of 
drivers (e.g. trucks, sporty drivers) to predict the future driving behavior of 
the own and surrounding vehicles that are controlled by human drivers. 

1.1.2 Driver State Model  

In AutoMate a driver state model shall be developed which can be further 
integrated within other driver models (e.g. model in previous section 1.1.1). 
The driver state model aims to provide an indication about the physiological, 
behavioral and psychological state of the driver. Such information will be 
used as input by the overall driver model. More specifically, the AutoMate 
concept of the driver state model will focus on providing the indication about 
the attention level, the visual distraction state and the fatigue level of the 
driver.  
 
In order to estimate these indicators the concept will combine facial data, 
driving data and environmental data. Facial data are provided by a vision 
based application which processes a video stream provided by a camera 
installed behind the steering wheel looking at the driver’s face through the 
steering wheel. The application detects and tracks a set of facial features 
(eye corners, pupils, eyelids, eyebrow, etc.) in real time (see Figure 2). From 
these features the application measures the eye gaze, the head gaze and the 
eye opening. The application output makes use of these measures to 
determine which area the driver is looking at: the road ahead, not to the 
road ahead, side mirrors, rear view mirror, etc.  
 
 

 
 
Figure 2: Tracking of facial features in real-time 
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From the area observed by the driver, the application classifies the visual 
distraction states of the driver. The visual distraction output is composed of 
one of two classes: “not visually distracted” (also called “on road”) if the 
driver’s visual attention is focused on the road ahead and “visually 
distracted” (also called “off road”) if the driver is not looking ahead at the 
road (see Figure 3). In order to reduce the false alarm rate the application 
decides after 120 ms that a driver not looking ahead is visually distracted. 
 
 

 
 
Figure 3: Classification of driver distraction states by the application based on the 
observed area 

 
The underlying idea is that a driver who is visually distracted cannot be fully 
aware of the situation. But the contrary case does not need to be true: a 
driver who is looking ahead is not necessarily aware of the situation, he 
could be drowsy or cognitively distracted.  
 
Table 1: Classification scheme for visual distraction based on visual attention 
distribution (VTS = Visual Time Sharing) 

 
Levels of Visual 
attention  

Rule of classification  

High  VTS > 66%; The driver looks ahead more than 4 s 
during the last 6 s. 

Medium  33% < VTS ≤ 66% 

Low 8% < VTS ≤ 33% 

Critical VTS ≤ 8%  
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The application additionally computes the visual attention distribution (Visual 
Time Sharing, VTS) concerning the different areas of interest located inside 
and outside of the vehicle. The application computes an attention level based 
on the similarity between the expected VTS according to the driving situation 
and the computed one, which is the actual existing attention distribution 
(Boverie & Cour, 2011). The visual attention is computed on a time window 
of 6 seconds and classified into 4 levels according to VTS thresholds (see 
Table 1).  
 
Furthermore, four drowsiness levels are classified by the application: Alert, 
Slightly drowsy, Drowsy and Sleepy (see Table 2). The classification is based 
on eye opening patterns and on the number of blinks and durations of the 
detected blinks. The drowsiness level diagnostic is based on the fact that 
people who are getting drowsy will show a modification of their blinking 
behavior and eyelid opening. For most of them the blink duration will 
increase along with an increase in sleepiness level (Boverie & Giralt, 2008). 
The output drowsiness levels are correlated with the Karolinska Sleepiness 
Scale (see Table 2). 
 
Table 2: Classification scheme of drowsiness levels (related to the subjective 
rating in the Karolinska Sleepiness Scale, KSS; Akerstedt & Gillberg, 1990) 

 
Levels  Rule of detection  Description (rating in KSS) 

Alert The driver has very few long 
blinks and very few very long 
blinks. 

Driver is alert; No sign of 
drowsiness (KSS: 1 to 5). 

Slightly 
drowsy  

The driver has few long blinks 
and very few very long blinks. 

First signs of drowsiness; Driver 
should only be informed 
(KSS: 6 to 7). 

Drowsy The driver could have some long 
blinks and few very long blinks 
or simply some very long blinks.  

Driver is drowsy; Fighting sleep; 
Degradation of his/her driving 
performances; Driver must stop 
and take a rest (KSS: 8). 

Sleepy The driver has some sleepy 
blinks. 

Driver is almost falling asleep; 
Critical state; Driver must stop 
urgently (KSS: 9). 
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Summarizing, the set of data output by the vision based application provides 
indications to the driver’s model about the level of situational awareness of 
the driver. 
 
In order to make the classification of the driver’s state more robust, the 
inputs coming from the internal camera can be combined with data from 
vehicle dynamics (speed, yaw-rate, steering angle, etc.) and from the 
environment (position in the lane, presence and features of surrounding 
objects, etc.) for the creation of a classifier using a machine-learning (ML) 
approach (e.g. a Deep Neural Network, such as Co-evolutionary Neural 
Network, or CNN in short). In fact, ML is the technique of searching large 
volumes of data for unknown patterns. It has been successfully applied in 
business, health care and other domains (Baldi & Brunak, 2001; Tan, 
Steinbach & Kumar 2005). The ML techniques combined with data mining 
can be able to provide the right algorithms to cope with such a challenge 
such as driver state classification.  
 
In particular, examples of possible inputs for the classifier are the following: 
• Speed [m/s] 
• Time To Collision [s] 
• Time To Lane Crossing [s] 
• Steering Angle [deg] 
• Lateral Position [m] 
• Lane Width [m] 
• Road Curvature [%] 
• Heading Angle [deg] 
• Position of the accelerator pedal [%] 
• Position of the brake pedal [%] 
• Turn indicator [on/off] 
• X,Y coordinates of car in front (if any) 
• Speed of car in front (if any) 
 

1.1.3 Task Model for Driving  

In AutoMate a task based approach to driver modelling will be used, focusing 
on constraints of possible driver actions. The existing task analysis approach 
CPM-GOMS (Cognitive, Procedural, Motor - Goals, Operators, Methods and 
Selection Rules, e.g. John & Kieras, 1996) will be adapted and extended to 
achieve this goal. CPM-GOMS describes human machine-interaction as a set 
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of operators applied by the user to achieve specific goals. A transfer to the 
domain of automotive driving requires an entirely new set of operators, 
which have not been described in the academic literature before.  
 
The approach is well suited to describe existing data, such as recordings 
from vehicles, video data or eye-tracking data. Furthermore it is also 
possible to model situations that have not occurred yet. Modelling existing 
data abstracts from data of a high granularity towards more high-level 
representations of driver behavior. Specifically, the data on a very low level 
such as driving data, eye tracking or other physiological data can be 
summarized from the numerical representation onto a semantically richer 
level. This in turn makes it easier for analysts to interpret both driving 
behavior of specific persons as well as understand the requirements a 
situation imposes on executing the driving task. This also helps designing 
automation technology as it becomes clearer what information must be 
available, and which kind of computations need to be carried out to solve the 
driving task in complex environments. 
 
The aim of this kind of driver modelling is twofold. Firstly, to understand the 
time course of drivers’ actions, and secondly, to gain insight into the 
requirements the driving tasks put forward in order to be carried out 
successfully. To investigate drivers’ actions, their behavior can be recorded in 
a driving simulator or in an instrumented vehicle. Drivers will move their 
arms, their heads, they will turn the steering wheel or press pedals. If that 
behavior is recorded with a high frequency, low-level data (i.e. data on a 
physical level) with a high granularity (i.e. a high time resolution) can be 
obtained. But this data is not informative yet, as it is just a large block of 
numbers. What is needed is a meaningful description of the behavior, such 
as “the driver looked for an open gap to switch to the left lane” or “the driver 
was confused about the traffic situation”. This gap is addressed by combining 
the low-level data into operators, applied in specific situations in order to 
achieve a specific goal. This also tells us a lot about the requirements of the 
specific situation. Driving on a highway with a low traffic density typically 
does have few requirements on information uptake and the decision 
processes on a tactical level are of low complexity. Negotiating a complex 
intersection in an unknown city as well as searching for the intended route, 
on the other hand, is much more taxing on the driver’s cognition and on a 
technical system attempting to carry out the driving task as well. Curiously, 
little is known about those requirements, both regarding the information 
requirements and the necessary cognition involved (Kircher & Ahlstrom, 
2016). Using task analysis and empirical data it might be possible to define 
those requirements for prototypical situations and manoeuvres. 
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Finally, it is of great value to be able to construct driver models not only for 
a specific human-machine interaction based on empirical data, but also to 
use it for modelling new and unseen situations. To this end, operators are 
created, which serve to transfer a current state into a goal state. Such a goal 
state could be to change lanes, for which a sub goal may be to activate the 
indicator. Models will be constructed for specific use cases. They will be used 
to predict possible courses of actions in a given situation as well as execution 
times for driver actions. The models can therefore be validated by comparing 
model predictions with empirical data.  
 

1.2 Situation and Vehicle Model  

In this project the situation model consists of scene objects surrounding the 
ego-vehicle. These objects can be traffic participants (e.g. other vehicles, 
pedestrian, cyclist) as well as traffic light signal, road-lanes and other 
obstacles (tree, pole, building, etc.). Objects will be modelled as 3D 
bounding boxes with semantic classes (e.g. vehicle, pedestrian, traffic light 
signal), position, orientation, motion and intention. This information will be 
estimated using ego-vehicle sensors (e.g. radar, laser scanner, camera, 
digital map) as input for a sensor fusion system. Uncertainties will be 
modelled using a probabilistic approach. Detected objects will be tracked 
over the time. 
 
In order to drive a car autonomously from point A to point B, a module is 
required that plans concrete actions. The output of this module is a 
trajectory, containing the vehicle’s states parameterized by time. A state 
contains the position of the vehicle’s reference point, orientation, velocity, 
acceleration etc. As soon as a suitable trajectory is found, it can be sent to 
the controlling unit for execution. Since this trajectory will be tracked by the 
vehicle, safety and comfort, as well as efficiency must be guaranteed. 
 
Trajectory planning algorithms require a situation model - including relevant 
static and dynamic environmental data - as input. For example a path 
(sequence of positions included in a trajectory) which gets too close to one of 
the lane’s boundary lines, violates the constraints and a new path must be 
found. Since the trajectory is parameterized by time, future actions of 
dynamic obstacles (vehicles, pedestrians etc.) must be predicted. Therefore 
the situation model must provide information concerning the states of 
dynamic obstacles. These obstacles have to be accurately classified, to know 
which models are appropriate for prediction. As a matter of fact - and due to 
sensor uncertainties and other effects - it is impossible to provide a situation 
model, which exactly matches reality. Therefore, probabilistic information 
concerning uncertainties, which will be considered during trajectory planning, 
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is incorporated. Another important aspect is that the choice of the used 
trajectory planning algorithm heavily depends on the provided situation 
model. In AutoMate, safety corridors will be provided. These corridors 
contain spatial, as well as temporal data about the environment. This is an 
approved, well working method (Ziegler et al., 2014). 
 
The vehicle model will be described using the position, the orientation and 
the motion (velocity and acceleration) of the vehicle with respect to a fixed 
global coordinate system. For the ego-vehicle this information can be 
estimated combining environment perception data (optical flow, depth map) 
and vehicle internal motion information (e.g. angular rate, steering angle, 
yaw rate, brake pressure, longitudinal/lateral acceleration, GPS data). The 
estimated vehicle model will be tracked over the time using specific 
algorithms such as Kalman filters. 

2 Process of Model Validation and Metrics Specification 

In AutoMate, several models are developed, which have been described in 
section 1 of this document. The descriptions are necessary for the definition 
of metrics for the validation of the models. At this point in time it is not 
possible to specify all details of the metrics for the model validation as they 
will mature during the project duration. Therefore, in AutoMate a four-step 
process of the model validation is used:  
 

1. Step: Describe what the goal of the model is (see section 1). 
2. Step: Define general metrics, which are related to the goals of the 

models (see section 3). 
3. Step: Description of the purpose of the experiments with regards to 

the model validation. 
4. Step: Specify criteria for deciding whether the validation was 

successful or not. 
 
Currently, steps 1 and 2 are covered within this document laying the ground 
work for steps 3 and 4, which will be targeted during the next project cycle. 
This means that the content of this deliverable will be updated and specified 
in more detail within the following versions of this deliverable. 

3 Preliminary General Metrics  

In this section general metrics for the validation of the driver, situation- & 
vehicle model are described which will be further detailed at a later point in 
the project.  
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3.1 Metrics for Validation of Driver Models 

In general, every model which is developed in AutoMate shall be validated 
with empirical or generated data which are compared to the data predicted 
by the model. Based on the goals of the model and the data which are used, 
the validation metrics can be defined. 
 
In AutoMate a probabilistic driver model will be developed that can be used 
for intention recognition and behavior prediction in specific use cases. 
Validation of this model will rely on comparisons of model predictions and 
estimations with empirical data in form of multivariate time series of traffic 
situations for each use case treated as ground truth, i.e. as the objectively 
correct state of the world that should be estimated. For covert aspects of 
driving behavior that cannot be observed and therefore won’t be included in 
the empirical data (e.g. intentions) the ground truth will be created by 
manual annotation of the empirical data by experts, or by the definition of 
objective measures, e.g. a lane change intention is defined to be present up 
to x seconds prior to the actual crossing of the lane. For intention recognition 
the model will be treated as a discrete classifier to be tested with resp. 
metrics, e.g. confusion matrices and corresponding metrics (see also section 
3.2). For behavior prediction, the model will be used to generate estimates 
of the future traffic situation in different prediction horizons, which will then 
be compared with the ground truth, by means of time series comparison and 
the use of appropriate distance metrics. 
 
The driver state model will provide indications about the attention level, the 
visual distraction state and the fatigue level of the driver. Driver distraction 
and inattention are important safety concerns (e.g. Regan, Hallett & Gordon, 
2011). Deriving knowledge about the human operator can be very valuable 
in the system validation phase. While interacting with a prototype or some 
modules of the adaptive cooperative human-machine system, the operator’s 
degree of visual distraction can be evaluated. The purpose of this system is 
to classify driver distraction, predicting the visual attention location of the 
driver (i.e. if the driver is looking at the road or not) providing a signal to the 
driver model. When the signal is “off-road” it means that the driver is not 
focusing his attention on the road. Thus, if for example a vehicle brakes in 
front of the driver, he will probably not react in time and the AutoMate 
System will have to take over the driving situation to avoid the critical 
situation.  
  
Metrics should compare an expert reference of the model (ground truth) to 
the processed output of the model. In the frame of AutoMate, a ground truth 
for each driver state model must be defined. Sets of expert reference data 
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must be generated to train, check and test the models. The data generation 
must take into account the required amount of data to be statistically 
significant but also the ground truth accuracy. 
 
Following the ordinary procedure for supervised machine learning, each data 
set will be split in three different subsets: 

• Training data (around 60% of the whole dataset), which are presented 
to the network during training and the network is adjusted according to 
its error. 

• Checking data (around 15% of the whole dataset), which are used to 
measure network generalization and to halt training when 
generalization stops improving. 

• Testing data (around 25% of the whole dataset), which have no effect 
on training and so provide an independent measure of network 
performance during and after training. The testing data shall be used 
for the validation. 

 
It is worth noting here that “Supervised Learning” (SL) is the machine 
learning task of inferring a function from labeled training data. The training 
data consist of a set of training examples. In SL, each example is a pair 
consisting of an input object (typically a vector) and a desired output value. 
 
Relevant metrics for the validation test of the driver state model are: 

• Mean Squared Error (MSE), which is a measure of the difference 
between the estimator and what is estimated (namely, it measures the 
average of the squares of the errors or deviations). 

• Correct Rate (CR), which is the percentage of the instances correctly 
classified by the system.  

• Sensitivity, which is the correctly classified positive samples (or True 
Positive Samples).  

• Specificity, which is the correctly classified negative samples (or True 
Negative Samples), 

• Number of false detections per hour. 
 
Other possible metrics can be considered, such as “Percent Error” (it 
indicates the fraction of samples which are misclassified: a value of 0 means 
no misclassifications, 100 indicates maximum misclassifications), “Cross-
Entropy” (it can be used to define the loss function in machine learning and 
optimization: lower values are better, zero means no error), etc. Also specific 
plots, such as confusion matrix and Receiver Operating Characteristic (ROC) 
curves will be used to graphically represent the results of the classifiers.  
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3.2 Metrics for Validation of Situation- & Vehicle models  

Since situation and vehicle modelling are estimations mostly based on 
machine learning approaches, metrics available in machine learning will be 
used to validate the estimation. The main idea is to measure the difference 
between the estimation and the ground truth. For that, success criteria are 
defined based on a specific threshold. If the difference between the 
estimation and the ground truth is greater than a given threshold, the 
estimation is accepted. Otherwise it will be rejected. Ground truth data can 
be collected using high accurate reference systems (e.g. laser scanner, 
digital map, inertial measurement unit). However, these systems are not 
always available. In most cases, human experts must generate the ground 
truth manually.  
 
Considering the estimation of discrete values as an object semantic class or 
intention, the estimation can be validated using a confusion matrix. The 
confusion matrix in case of a 2-class estimation, Positive (P) and Negative 
(N), is a 2X2 matrix with the following outcomes: 
 

1. True positive (TP): the estimation accepts a positive instance. 
2. False positive (FP): the estimation accepts a negative instance. 
3. False negative (FN): the estimation rejects a positive instance. 
4. True negative (TN): the estimation rejects a negative instance. 

 
Based on the outcomes mentioned above, several metrics will be computed: 
 
Accuracy (ACC) 𝐴𝐶𝐶 =  

𝑇𝑃 + 𝑇𝑁
𝑃 + 𝑁  

Precision (PR) 𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

Recall (RC) 𝑅𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 
Curves such as ROC and Recall Precision Curve (RPC) will also be generated 
based on the confusion matrix. Some examples of success criteria based on 
these metrics and curves can be: 

1. The classifier must have accuracy greater than 90% and a precision 
greater than 95%. 

2. The classifier ROC must have an Area Under the Curve (UAC) greater 
than 80%.  
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4 Conclusion 

Within this document the process of the definition of the validation metrics in 
AutoMate is described. As stated earlier, the first two steps which are 
necessary within this process are the description of the to be developed 
models (i.e. probabilistic driver model, driver state model, task model, 
situation model, vehicle model) and the definition of preliminary, high-level 
metrics for the model validation. These two steps are covered within this 
document and will be further refined and updated during the duration of the 
project. The latter two steps, i.e. the description of experiments and the 
specification of success-criteria, will also be covered in later versions of this 
deliverable when more information on the upcoming experiments and 
necessary aspects of the model validations is available.  
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