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1 Introduction 
The purpose of this document is to describe all the results of the sensor 
platform and models including the verification and validation results of task 

2.2 to task 2.5 from the first cycle. 
As described in the DOW the first cycle aims at developing a framework for 

later integration of all enablers by defining interfaces for data exchange and 
communication. This framework serves as an initial specification of the 

system architecture (Enabler 7). At the end of the initial requirement 
definition milestone M1 was reached. The technologies for Enabler 1–6 will 

be researched along the requirements and first versions of software 
components and will be implemented by taking into account the interface 

definitions. For the first cycle we perform exploration, validation and 
verification on a component level. For the current milestone M2 the current 

state of all exploration, validation and verification activities is documented 
with respect to the models in this document. This document will then be used 

as a starting point for the subsequent cycle. In parallel, we setup the 

baseline vehicles to be used for comparative evaluation in the upcoming 
cycles 2 and 3. 

 
The document is divided in two main sections: In the following section 

“Automate driver, vehicle and situation modelling concept” we present the 
status of the WP2 development and tests performed during the first cycle as 

well as those planned for the two next cycles. The second main section 
“Instantiation of the Automate platform” is dedicated to the instantiation of 

the sensor and communication platform and the current state of 
development of the driver, situation and environment models that will then 

be later integrated into the different demonstration vehicles.  
 

2 Automate Driver, vehicle and situation modelling 
concept  
 

The Automate driver, vehicle and situation modelling concept is targeted to 

the implementation of the technical enablers 1, 2 and 3.  

2.1 Enabler 1: Sensor and communication platform  

As described in the DOW the objectives of enabler 1 are to use and advance 
existing sensor and V2X communication technology provided by the 

consortium partners as a technological basis to realize the objective 2 
(Develop solutions to monitor, understand and anticipate the driver, the 

vehicle and the traffic situation).  
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2.1.1 Generic requirements of the Automate sensors  
The three scenarios targeted within Automate require different sets of 

sensors based on the following ones:  
 

 Global positioning Sensing (GPS) 
 Digital map 

 Environmental sensing 
 Driver’s state sensor 

 Communication V2X, V2V   

 Vehicle data 
 Ego-vehicle pose and motion 

 Communication protocol  
 

All sensors must be calibrated to a global/local coordinate system and use 
the same clock. All provided sensor data must provide information about 

measurement uncertainties. Sensor data can be useful for visualization or 
evaluation of situation model. The situation model doesn’t need a direct 

access to this layer since data needed for situation modeling are provided by 
the object layer. Therefore the object layer must be able to forward sensor 

data to the situation layer. 

2.1.2 Global Positioning Sensing 

This sensor must provide at least the ego-vehicle pose and motion as well as 
UTC time. The UTC time can be used for synchronization 

2.1.3 Digital map  

2.1.3.1 Global Map 

This map contains information about the road topology as well as the 

transient dynamic data. This information can be useful for situation 
prediction. 

 
1. Global map topology: road-graph 

2. Transient Dynamic Data (e.g. Traffic Jam, Construction, Blocking, 
average travel time) 

2.1.3.2 High accurate digital map 

This map contains high-accurate information about road and infrastructure. 

This data can be recorded offline and/or detected during driving. A link to the 
global map must be available 

 
1. Road/Lane (Marking, Curb, stop line, etc.) 

2. Roadside infrastructure (Traffic sign, Traffic light, etc.) 
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2.1.4  Environmental sensing 

The environmental data include the road, the objects (static and dynamics) 

and the driver state (internal scenario). These different classes are described 
in the following paragraphs. 

2.1.4.1 Road data 

Road data is necessary to predict the future evolution of the traffic situation, 

as a necessary input for driver modelling (T2.3), vehicle and situation 
modelling (T2.4), and online risk assessment (T3.3). Road data can be 

detected or extracted from the high accurate digital map. 

 
1. Road/Lane marking 

2. Curb 

3. Traffic light and signal 

2.1.4.2 Static Obstacles 

All detected objects must be related to a unique/global coordinate system as 
well as have the same clock. Estimated data must provide uncertainties. This 

model contains static detected obstacles. Obstacles can be classified or not 
by three steps. 

 

1. (Semantic) Occupancy Grid Maps 
2. Stixels. A stixel is a vertical stick defined by its 3D position relative to 

the camera. Each stixel limits the free space and approximates the 
object boundaries. 

3. Elevation/Drivable Maps 

2.1.4.3 Dynamic objects 

Information about dynamic objects, assumed to represent other traffic 
participants, are necessary to predict the future evolution of the traffic 

situation, as a necessary input for driver modelling (T2.3), vehicle and 
situation modelling (T2.4), and online risk assessment (T3.3). This model 

contains a list of detected, tracked and fused dynamic objects with the 
attribute: 

 
1. Position 

2. Motion velocity and acceleration 

3. Size 
4. Semantic class 
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2.1.5 Driver’s state sensor  

The driver’s state sensor is a vision based system which processes the video 

flow of the driver’s face provided by one camera. From the image analysis 
the system detects and track facial features (eyelid, eye corners, mouth, 

etc.). The dynamics of these features are then analysed to determine the 
following driver’s state models: 

 
1. Drowsiness 

2. Visual Inattention/Distraction 

3. Cognitive distraction 
 

In cycle 1 we have defined the sensor output according to the Automate 
requirements, ported and adapted the existing algorithms, a specific 

automate HW (camera, lights, processing unit) has been defined. 
 

For cycle 2 the sensor HW will be finalized according to the requirements the 
different demonstration vehicle. The up-to-date models will then be 

integrated. More detailed sensor specifications are available in the document 
AutoMate_WP2_Driver_State_CAF_01.pdf 

2.1.6 V2X (V2V and V2I) communication  

In the AutoMate project, it is taken advantage of Vehicle-to-Vehicle and 

Vehicle-to-Infrastructure communication, which are called V2X together. In 
the first case, different V2V capable vehicles are communicating using 

wireless, RF connection. In the latter case, vehicles communicate with the 

infrastructure (e.g. traffic lights and signs, lamp- or utility poles, etc.). This 
communication between the entities is temporary, since the vehicles are in 

motion and often with high speeds. Therefore the connection between them 
is not sustainable. V2X is similar to a mobile ad hoc network; however, in 

this case the network elements are the vehicles and the road side elements 
(e.g. lamp post). 

 
The benefit of V2X is to share and broadcast information between the 

vehicles. These information consist of frequently transmitted beacon 
messages (who I am, what is my current geo-position and speed, where I 

am heading etc.), warning messages (e.g. accident, oil spill on the road, 
traffic jam ahead etc.), environmental messages (e.g. heavy rain, frozen 

road, heavy cross-wind etc.). 
 

In the EU the accepted standard for V2X is the GeoNetworking protocol 
(Ziya Cihan & Ali Gokhan Yavuz, 2013). It provides the above mentioned 
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messages based different facilities and also it handles that these messages 
are broadcasted in the given geo-area, where they are relevant.  

 
From V2X technology, the beacon messages will be mostly used in AutoMate 

project to allow the TeamMate car to sense, predict and react to other V2V 
capable cars in an extended area, and also to enhance the sensor fusion or 

decision making procedure. Further usage of V2X is required for the case 
that the infrastructure sends useful information about its current condition 

and events, e.g. a traffic sign that is able to transmit map information about 

the oncoming roundabout. 

2.1.7 Vehicle data via in-vehicle buses 

Vehicle data is required to compute the vehicle trajectory: 
 

1. Speed 
2. Yaw rate 

3. Steering wheel Angle 

2.1.8 Ego-Vehicle pose and motion 

High-quality data of the ego-pose and –motion is necessary to derive the 
spatial relation between the ego-vehicle, other traffic participants, and the 

road data, as a necessary input for driver modelling (T2.3), vehicle and 
situation modelling (T2.4), and online risk assessment (T3.3). The ego-pose 

and motion consist of: 
 

1. Position 

2. Orientation  

3. Motion (velocity and acceleration) according to a global coordinate 

system. 

2.1.9 Communication protocol  

The communication protocol between the AutoMate sensor systems is a set 
of libraries and tools for message passing and data marshalling, targeted at 

real-time systems where high-bandwidth and low latency are critical. It is 
specific to each demo car. Still in order to achieve a reliable and efficient 

exchange of data between the sensors, the vehicle and the models system 
the communication protocol should fulfil a minimal set of requirements: 

 
 Real time 

 Low-latency inter-process communication 
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 Efficient broadcast mechanism using UDP Multicast 

 Type-safe message marshalling  

 User-friendly logging and playback (lcm-logger and log-player) 

 No centralized "database" or "hub" – peers communicate directly 

2.2 Enabler 2: Driver Modelling and Learning  

As described in the DOW the objective of enabler 2 is to build a probabilistic 
driver model. The model will describe the dynamic evolution and statistical 

relationships between the driver’s state, behaviour and environment and will 
enable to infer and predict the driver status, behaviour as well as intentions.  

 
The general connection between situation-, vehicle-, and driver-models is 

depicted in Figure 1. The sensor and communication platform collects and 
enriches the available sensor information and passes this information to a 

component for situation understanding which maintains the situation-model 
as a current representation of the TeamMate vehicle’s belief about the world. 

The information is further enriched by the situation understanding to provide 
a semantic classification for the situation model. The resulting beliefs about 

the current state of the world are passed 1) to the situation prediction, which 

utilizes a set of vehicle models to estimate likely temporal and spatial 
evolution of the traffic scene, and 2) to the driver monitoring, which uses a 

set of driver models to estimate the current state of the driver.  
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Figure 1: Informal description of the information flow for situation-, vehicle- 

and driver-models. 

 
 

2.2.1 DriveGOMS  

In the first cycle of AutoMate, we have continued the work on our driving 

task analysis framework, DriveGOMS. The original goal of the framework is 
make driver modelling for HMI design and evaluation easier. Within 

AutoMate, we plan to not only address these aspects by modelling the 

human-machine interaction, but also support the work on enabler 2 
(Probabilistic Driver Modelling and Learning) by providing insight into the 

structure of human behaviour.  
 

DriveGOMS applies the principles of the GOMS task analysis approach to the 
driving task (Card, Moran & Newell, 1983). This means a decomposition of 

the driving task into goals, operators, and methods. Goals are what 
structures the task, and can be derived e.g. from thinking aloud protocols. 

Operators can partially be measured, or derived from task necessities. 
Methods are a collection of operators and be viewed as driving manoeuvres. 

The resulting models can be used to predict execution times of driving 
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activities, as a formal description of empirical driving data, or to define 
normative models of driving activities. 

 
The purpose of the approach is to a) describe existing data, and to b) model 

unknown situations. The advantage of modelling existing data in this way is 
to have an un-ambiguous way to describe driving behaviour on all 

psychologically relevant levels. Since there are times attached to the 
operators, a model of a behavioural sequence (such as an interaction with 

the TeamMate car) predicts a time for this sequence. 

 
In cycle 1, we specifically have worked to gain a better understanding of 

goals and operators based on empirical data from simulator driving studies. 
To this end, we used data acquired previously, and used this to hypothesize 

and validate goals and operators. This work included a lot of the necessary 
data pre-processing, such as data fusion (e.g. driving data and eye tracking 

data). We have produced lists of goals and operators that can now be used 
to model driver-vehicle-interactions.  

 
In cycle 2, we will support the empirical analysis of the studies conducted 

within WP2 with our framework. That means that we will model the driver 
behaviour and driver interaction with an automation based on the empirical 

data, and use this knowledge to make suggestions regarding the design of 
the TeamMate car. 

 

2.2.2 Driver Intention Recognition BadMob  

In Deliverable D2.1 “Metrics and Experiments for V&V of the driver, vehicle, 

and situation models in the 1st cycle”, we introduced Bayesian Autonomous 
Driver Mixture-of-Behaviors (BAD MoB) models and Driver Intention 

Recognition (DIR) models as a starting point for a coherent probabilistic 
architecture for intention recognition and behavior prediction.  

 
In the following, random variables will be denoted by capital letters, such 

as𝑋, 𝑌, 𝑍, and we will use corresponding lower-case letters 𝑥, 𝑦, 𝑧 to denote 

specific values taken by such variables. The set of values, a random variable 
𝑋 may take, will be denoted by Val(𝑋). Sets of variables will be denoted by 

bold capital letters, e.g., 𝑿 = {𝑋1, … , 𝑋𝑛}, and we will use lower-case bold 

letters 𝒙 = {𝑥1, … , 𝑥𝑛} to denote specific values taken by such sets. Dealing 

with temporal models, the time line is assumed to be discretized into time 

slices with a constant time granularity of Δ𝑡. Time slices are indexed by non-

negative integers, and we use 𝑋𝑡 to represent the instantiation of a variable 

𝑋 at a time 𝑡. A sequence of variables  𝑋, resp. sets of variables 𝑿, from time 
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𝑖 to 𝑗 will be denoted by 𝑋𝑖:𝑗 , resp. 𝑿𝑖:𝑗. Lastly, probability density functions 

(PDFs) and probability distributions (CPDs) will uniformly be denoted by 𝑝(. ). 
 

Let 𝑨 = {𝐴1, … , 𝐴𝑛𝐴} denote a set of continuous and/or discrete random 

variables that represent the control actions of the human driver; 𝑩 =

{𝐵1, … , 𝐵𝑛𝐵} denotes a set of discrete variables that represent different 

behaviors and intentions on the maneuvering layer, 𝑷 = {𝑃1, … , 𝑃𝑛𝑃} denotes a 

set of continuous and/or discrete random variables that represent the 

hypothetical perceptual input of the human driver. Additionally, let Δ denote 
a delay between perception and action due to perception and reaction times. 

A BAD MoB model defines a (conditional) Dynamic Bayesian Network that 
specifies the (conditional) probability density function 𝑝(𝑨1:𝑇 , 𝑩1:𝑇|𝒑1−Δ:𝑇−Δ) for 

any number of 𝑇 time slices as  

 

𝑝(𝑨1:𝑇 , 𝑩1:𝑇|𝒑1−Δ:𝑇−Δ) = 𝑝(𝑨1, 𝑩1|𝒑1−Δ)∏𝑝(𝑨𝑡, 𝑩𝑡|𝑨𝑡−1, 𝑩𝑡−1, 𝒑𝑡−Δ).

𝑇

𝑡=2

 

 

For the creation of the DIR model, the dependence of behaviors and action 
variables on the past perception was replaced by a more traditional sensor 

model. Let 𝑶 = {𝑂1, … , 𝑂𝑛𝑂} denote a set of continuous and/or discrete random 

variables that represent the observations of the current traffic situations, a 
DIR model would therefore model the joint density distributions over actions, 

behaviours and observations over an arbitrary length 𝑇 ≥ 1 as: 

 

𝑝(𝑨1:𝑇 , 𝑩1:𝑇 , 𝑶1:𝑇) = 𝑝(𝑶1|𝑨1, 𝑩1)𝑝(𝑨1, 𝑩1)∏𝑝(𝑶𝑡|𝑨𝑡, 𝑩𝑡)𝑝(𝑨𝑡, 𝑩𝑡|𝑨𝑡−1, 𝑩𝑡−1).

𝑇

𝑡=2

 

 

Following this short reminder, this deliverable will introduce a template for 
probabilistic driver models developed in AutoMate. This template is assumed 

to be adapted to the different scenarios resp. demonstrators based on 
dataset obtained in these scenarios.  

 
For the probabilistic driver models in AutoMate, we start with the idea of BAD 

MoB models, where we replace the perception variables 𝑷, by scenario-

dependent subsets of variables 𝑺 provided by the situation-model (c.f., 

Section 2.3.2), representing necessary information about the current 

situation, including e.g., the state of the ego-vehicle, surrounding vehicles, 
and the future course of the road. We furthermore assume knowledge about 

the mode, either manual or autonomous driving, of the TeamMate car, 

represented by a binary variable 𝑀, with Val(𝑀) = {𝑚𝑀, 𝑚𝐴}. The resulting 
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probabilistic driver models define a CPD 𝑝(𝑨1:𝑇 , 𝑩1:𝑇 , 𝑺1:𝑇|𝑀1:𝑇) for any number 

of 𝑇 time slices as 

 

𝑝(𝑨1:𝑇 , 𝑩1:𝑇 , 𝑺1:𝑇|𝑀1:𝑇) = 𝑝(𝑨1, 𝑩1, 𝑺1|𝑀1)∏𝑝(𝑨𝑡, 𝑩𝑡 , 𝑺𝑡|𝑨𝑡−1, 𝑩𝑡−1, 𝑺𝑡−1,𝑀𝑡)

𝑇

𝑡=2

, 

 
with  

 
𝑝(𝑨𝑡, 𝑩𝑡 , 𝑺𝑡|𝑨𝑡−1, 𝑩𝑡−1, 𝑺𝑡−1, 𝑀𝑡) = 𝑝(𝑩𝑡|𝑩𝑡−1, 𝑺𝑡−1)𝑝(𝑨𝑡|𝑨𝑡−1, 𝑺𝑡−1, 𝑩𝑡)𝑝(𝑺𝑡|𝑺𝑡−1, 𝑨𝑡, 𝑀𝑡). 

 

Here, the CPD 𝑝(𝑩𝑡|𝑩𝑡−1, 𝑺𝑡−1) models the formation of intentions and driving 

maneuvers/behaviors based on the current state of the traffic situation, 
𝑝(𝑨𝑡|𝑨𝑡−1, 𝑺𝑡−1, 𝑩𝑡) models the selection of control actions for different 

intentions and behaviors based on the current state of the traffic situation, 

and  𝑝(𝑺𝑡|𝑺𝑡−1, 𝑨𝑡, 𝑀𝑡) models the evolution of the traffic situation dependent 

on the control inputs of the human driver if in a manual mode: 

 

𝑝(𝑺𝑡|𝑺𝑡−1, 𝑨𝑡, 𝑀𝑡) = {
𝑝(𝑺𝑡|𝑺𝑡−1, 𝑨𝑡 , 𝑀𝑡), 𝑀𝑡 = 𝑚𝑀

𝑡

𝑝(𝑺𝑡|𝑺𝑡−1, 𝑀𝑡), 𝑀𝑡 = 𝑚𝐴
𝑡 . 

 

This template is motivated by reasonable assumptions on the causal 

mechanisms. The formation of intentions and resulting selection of behaviors 
is governed on the traffic situation, as perceived by the human driver. Resp., 

the selection of control actions will be guided by the underlying intentions 
and selected maneuvers/behaviors guided by the perception of the traffic 

situation. Lastly, the evolution of the traffic scene itself will directly be 
influenced by the selected control actions, but not by the driver’s intentions 

or behaviors, outside of the effects of control actions. 
 

The CPDs 𝑝(𝑩𝑡|𝑩𝑡−1, 𝑺𝑡−1) and 𝑝(𝑨𝑡|𝑨𝑡−1, 𝑺𝑡−1, 𝑩𝑡) will be estimated from 

multivariate time-series of human behavior traces obtained in the 
experiments planned for the first cycle (Section 2.2.4.1). The CPD 

𝑝(𝑺𝑡|𝑺𝑡−1, 𝑨𝑡, 𝑀𝑡) will reuse the algorithms developed for the prediction of the 

spatial and temporal evolution of the traffic scene. 

 
As an alternative, we will consider replacing 𝑝(𝑩𝑡|𝑩𝑡−1, 𝑺𝑡−1) by 𝑝(𝑩𝑡|𝑩𝑡−1) and 

𝑝(𝑺𝑡|𝑺𝑡−1, 𝑨𝑡, 𝑀𝑡) by 𝑝(𝑺𝑡|𝑺𝑡−1, 𝑩𝑡 , 𝑨𝑡, 𝑀𝑡) akin to DIR models. 

 
The goal of the probabilistic driver model in AutoMate is to maintain a belief 

state 𝑝(𝑩𝑡, 𝑨𝑡, 𝑺𝑡|𝒆1:𝑡,𝑀𝑡 = 𝑚𝑀
𝑡 ) at each time step 𝑡 over intentions resp. 

behaviors, control actions and the world state, given all “evidence” 𝒆1:𝑡 (the 

exact nature of evidence will be explained below) obtained by the TeamMate 
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vehicle up to the current point in time 𝑡 and under the assumption that the 

TeamMate vehicle is controlled by the human driver. The belief state can 

then be further processed to derive information required for the different 

demonstrators. For the ULM demonstrator, the probabilistic driver model will 
provide a belief state over the current intentions and behaviors of the human 

driver as a means for selecting appropriate maneuvers to be performed 
autonomously by the TeamMate vehicle, e.g.: 

 

𝑝(𝑩𝑡|𝒆1:𝑡, 𝑀𝑡 = 𝑚𝑀
𝑡 ) = ∫ 𝑝(𝑩𝑡, 𝒂𝑡 , 𝒔𝑡|𝒆1:𝑡, 𝑀𝑡 = 𝑚𝑀

𝑡 ) 𝑑𝒂𝑡𝑑𝒔𝑡
∞

−∞ 

. 

 
For the VED and CRF demonstrator, under the assumption that the model 

captures the normative driving behavior of the human driver, the 
probabilistic driver model will provide an assessment of the current driving 

parameters and control actions of the human driver, e.g.: 

 

𝑝(𝒂𝑡, 𝒔𝑡|𝒆1:𝑡,𝑀𝑡 = 𝑚𝑀
𝑡 ) = ∑ 𝑝(𝒃𝑡, 𝒂𝑡 , 𝒔𝑡|𝒆1:𝑡, 𝑀𝑡 = 𝑚𝑀

𝑡 )

𝒃∈Val(𝑩)

. 

 
It remains to specify, what evidence is available at each time step to 

estimate the current belief state. We assume that the driver model has 
access to the current mode of the TeamMate vehicle 𝑚𝑡, the belief state over 

the state of the TeamMate vehicle 𝑝(𝑿𝑇𝑀
𝑡 |𝒐1:𝑡), the belief states over other 

traffic participants 𝑝(𝑿𝑂𝑖
𝑡 |𝒐1:𝑡), 𝑖 = 1,… ,𝑚 and the description of the 

environment around the TeamMate car provided e.g., by a map 𝑀, provided 

by the situation model.  

 
 

An important challenge is the incorporation of uncertain information provided 
by the situation model in the driver model. A first possibility to incorporate 

the information provided by the situation model is to discard the knowledge 

about uncertainty and just use the modes of each belief state as evidence. 
As such, at each time step 𝑡, we’d have evidence about the current control 

actions 𝑨𝑡 = 𝒂𝑡, the current world state 𝑺𝑡 = 𝒔𝑡, and the current mode of 

operation 𝑚𝑡. We can use this information to recursively obtain a belief state 

𝑝(𝑩𝑡|𝒔1:𝑡, 𝒂1:𝑡, 𝑚1:𝑡)  from a previously inferred belief state 

𝑝(𝑩𝑡−1|𝒔1:𝑡−1, 𝒂1:𝑡−1, 𝑚1:𝑡−1) in the following way: 
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𝑝(𝑩𝑡|𝒔1:𝑡, 𝒂1:𝑡, 𝑚1:𝑡) =
1

𝑍
𝑝(𝑩𝑡, 𝒂𝑡 , 𝒔𝑡|𝒔1:𝑡−1, 𝒂1:𝑡−1, 𝑚1:𝑡)

∝ ∑ 𝑝(𝑩𝑡, 𝒂𝑡 , 𝒔𝑡|𝒃𝑡−1, 𝒂𝑡−1, 𝒔𝑡−1, 𝑚𝑡)𝑝(𝒃𝑡−1|𝒔1:𝑡−1, 𝒂1:𝑡−1, 𝑚1:𝑡−1)

𝒃∈Val(𝑩)

= ∑ 𝑝(𝑩𝑡|𝒃𝑡−1, 𝒔𝑡−1)𝑝(𝒂𝑡|𝒂𝑡−1, 𝒔𝑡−1, 𝒃𝑡)𝑝(𝒔𝑡|𝒔𝑡−1, 𝒂𝑡, 𝑚𝑡)𝑝(𝒃𝑡−1|𝒔1:𝑡−1, 𝒂1:𝑡−1, 𝑚1:𝑡−1)

𝒃∈Val(𝑩)

, 

 
with 𝑍 being a normalization constant: 

 

𝑍 = 𝑝(𝒂𝑡, 𝒔𝑡|𝒔1:𝑡−1, 𝒂1:𝑡−1, 𝑚1:𝑡) = ∑ 𝑝(𝒃𝑡, 𝒂𝑡 , 𝒔𝑡|𝒔1:𝑡−1, 𝒂1:𝑡−1, 𝑚1:𝑡)

𝒃∈Val(𝑩)

. 

 

This method is very efficient, but may be unsatisfactory, as we’re discarding 
any uncertainties about the information provided by the situation model.  

 
A potential method to incorporate uncertainties in the evidence is uncertain 

or soft evidence. The basic idea is also known as Jeffrey’s rule and follows 
the idea to first define a model conditioned on the evidence and then 

average over the distribution of the evidence (Barber, 2012). Let �̃� and �̃� 
denote the uncertain evidence for both the actions and states provided by 
the situation model. The inference scheme for the probabilistic driver model 

using soft evidence is given by: 
 

𝑝(𝑩𝑡|�̃�1:𝑡, �̃�1:𝑡, 𝑚1:𝑡) ∝ ∫ 𝑝(𝑩𝑡, 𝒂𝑡 , 𝒔𝑡|�̃�1:𝑡, �̃�1:𝑡, 𝑚1:𝑡)

∞

−∞

 𝑑𝒂𝑡𝑑𝒔𝑡

= ∫ 𝑝(𝑩𝑡|𝒂𝑡, 𝒔𝑡 , �̃�1:𝑡, �̃�1:𝑡, 𝑚1:𝑡)

∞

−∞

𝑝(𝒂𝑡, 𝒔𝑡|�̃�1:𝑡, �̃�1:𝑡, 𝑚1:𝑡) 𝑑𝒂𝑡𝑑𝒔𝑡, 

 

where we assume that  
 
𝑝(𝑩𝑡|𝒂𝑡, 𝒔𝑡 , �̃�1:𝑡, �̃�1:𝑡, 𝑚1:𝑡)

∝ ∑ ∫ 𝑝(𝑩𝑡, 𝒂𝑡, 𝒔𝑡|𝒂𝑡−1, 𝒔𝑡−𝑡,𝑚𝑡)𝑝(𝒃𝑡−1, 𝒂𝑡−1, 𝒔𝑡−1|�̃�1:𝑡−1, �̃�1:𝑡−1, 𝑚1:𝑡−1)

∞

−∞

 𝑑𝒂𝑡−1𝑑𝒔𝑡−1

𝒃∈Val(𝑩)

 

 
and   

 

𝑝(𝑨𝑡, 𝑺𝑡|�̃�1:𝑡, �̃�1:𝑡, 𝑚1:𝑡) =∏𝑝(𝐴𝑡|�̃�𝑡)

𝐴∈𝑨

∏𝑝(𝑆𝑡|�̃�𝑡)

𝑆∈𝑺

, 
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with 𝑝(𝑋𝑡|�̃�𝑡) being given by the current belief in the situation model. 

Unfortunately, the resulting inference scheme requires the joint integration 

resp. summation over action variables 𝑨𝑡 and state variables 𝑺𝑡 that cannot 

be simplified due to the model structure, which contrasts with potential 
simplification for the integration and summation over past action and state 

variables. As such, inference using uncertain evidence may turn out to be too 
costly for the context of AutoMate, which must be tested during the project.  

 
Another possibility, and the one we’ll focus on first, is the use of unreliable or 

likelihood evidence (Barber, 2012). The basic idea is as follows. For each 
variable 𝑋 ∈ {𝑨, 𝑺} we extend the model by a corresponding variable 𝑂𝑋 and 

CPD 𝑝(𝑂𝑋
𝑡 |𝑋𝑡). During runtime, we assume 𝑂𝑋

𝑡  to be observed and define the 

likelihood 𝑝(𝑜𝑋
𝑡 |𝑋𝑡) to equal the corresponding belief in the situation model. 

Let 𝑶 denote the set of all variables 𝑂𝑋, we can now recursively obtain a 

belief state 𝑝(𝑩𝑡, 𝑨𝑡, 𝑺𝑡|𝒐1:𝑡,𝑚1:𝑡)  from a previously inferred belief state 

𝑝(𝑩𝑡−1, 𝑨𝑡−1, 𝑺𝑡−1|𝒐1:𝑡−1, 𝑚1:𝑡−1) in the following way: 

 
𝑝(𝑩𝑡, 𝑨𝑡 , 𝑺𝑡|𝒐1:𝑡,𝑚1:𝑡)

∝ ∑ ∫ 𝑝(𝑩𝑡, 𝑨𝑡 , 𝑺𝑡, 𝒐𝑡|𝒃𝑡−1, 𝒂𝑡−1, 𝒔𝑡−1, 𝑚𝑡)𝑝(𝒃𝑡−1, 𝒂𝑡−1, 𝒔𝑡−1|𝒐1:𝑡−1, 𝑚1:𝑡−1)𝑑𝒂𝒕−𝟏𝑑𝒔𝒕−𝟏
∞

−∞𝒃∈Val(𝑩)

= 𝑝(𝒐𝑡|𝑨𝑡, 𝑺𝑡) ∑ ∫ 𝑝(𝑩𝑡, 𝑨𝑡, 𝑺𝑡|𝒃𝑡−1, 𝒂𝑡−1, 𝒔𝑡−1, 𝑚𝑡)𝑝(𝒃𝑡−1, 𝒂𝑡−1, 𝒔𝑡−1|𝒐1:𝑡−1, 𝑚1:𝑡−1)𝑑𝒂𝒕−𝟏𝑑𝒔𝒕−𝟏
∞

−∞𝒃∈Val(𝑩)

, 

 
where 

𝑝(𝒐𝑡|𝑨𝑡, 𝑺𝑡) =∏𝑝(𝑜𝐴
𝑡 |𝐴𝑡)

𝐴∈𝑨

∏𝑝(𝑜𝑆
𝑡|𝑆𝑡)

𝑆∈𝑺

. 

 
Compared to the notion of soft evidence, likelihood evidence has the 

advantage that 𝑝(𝒐𝑡|𝑨𝑡, 𝑺𝑡) can be evaluated without the need to jointly 

integrate resp. sum over the current state and actions, making it much more 
efficient for performing inferences in real-time scenarios. It is to note 

however, that likelihood evidence works on a fundamentally different 
principle than soft evidence. Using soft evidence, we’d assume that the 

beliefs provided by the situation model are correct, but uncertain. Likelihood 
evidence on the other hand, will be fused into the prior beliefs of the model 

itself, only shifting the driver model’s a-priori beliefs towards the beliefs 
provided by the information model. For now, the effects of using likelihood 

evidence are not tested, but will be analyzed for the next cycle. 
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2.2.3 Driver state model 

The driver state model aims to provide an indication about the physiological, 

behavioural and psychological state of the driver. The driver’s state model is 
a SW module, which provides the following the models: Drowsiness, Visual 

attention and visual distraction, and Cognitive distraction (possibly, under 
investigation). 

 

2.2.3.1 Drowsiness 

Drowsiness is a state of reduced consciousness (or, near-sleep) due to sleep 

pressure. The drive to sleep is primarily caused by increased activity of the 
sleep system, in combination with decreased activity of the arousal system. 

Somnolence or sleepiness can be caused by prior lack of sleep and/or 
circadian disturbance, and might be exacerbated by long periods of 

inactivity/boredom.  
 

Note that for definition (and measurement) sake, there is a difference 
between drowsiness/sleepiness (due to sleep need) and fatigue (due to 

excessive exertion of mental effort). 
 

There are many problems related with drowsiness: lowered acuity in 
perception of driving events, reduced tasks performance, impaired 

judgement abilities, lower reaction, delay, etc. Moreover the risk of error is 
increased by the fact that drivers are mostly not able to make a reliable 

evaluation or acknowledgement of their sleepiness level. 

 
Drowsiness is characterized by many physiological symptoms. The most 

mentioned in the literature are: an increase of the blink duration, yawning, 
head leaning forward, reduced eyelid opening, and eye gaze staring. The 

driving behaviour is also affected. The driver shows difficulties to maintain an 
accurate trajectory. Vehicle drifting and swaying in the lane are symptoms of 

a significantly degraded drowsiness. 
 

The developed drowsiness model is mainly based on the increase of the blink 
duration. The model output 4 drowsiness levels correlated with the 

Karolinska Sleepiness Scale (KSS) ranging from alert to falling asleep 
(Boverie & Giralt, 2008). Within Automate we will reinforce this diagnostic 

using facial or head behaviour. In cycle 1 the worked focused on head 
specific movement like leaning forward or backward to the head rest in a 

specific way. The achieved performance will guideline future works toward 

this head movement approach or toward specific facial behaviour like talking 
or yawning. 
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These developments are supported by a drowsiness labelled data base of 15 
subjects driving in simulator conditions. 

  

2.2.3.2 Visual attention/distraction   

A driver is visually distracted when s/he is not looking ahead at the road; his 
eye gaze is off the road. The underlying idea is that a driver who is visually 

distracted cannot be fully aware of the situation. But the contrary case is not 
true: a driver who is looking ahead is not necessarily aware of the situation; 

he could be drowsy or cognitively distracted. 

 
A visual attention level is computed from the visual attention distribution 

(Visual Time Sharing, VTS) of the different areas of interest located inside 
and outside of the vehicle according to the driving situation (Boverie & Cour, 

2011). 
 

In cycle 1 basic visual distraction models based on the proportion of time the 
driver spends looking at the road have been integrated in the Automate 

algorithmic frame work. In cycle 2 they will be further improved by tuning 
the timings, and weights of the different areas observed by the driver. Still 

the main line of improvement will be to improve the accuracy and the 
robustness of the eye/head gaze provided by the face tracker. This work is 

carried on within the development of the driver’s state sensor.  
 

2.2.3.3 Cognitive distraction 

Cognitive distraction can occur when attention is withdrawn from the 
processing of information necessary for the safe operation of a motor 

vehicle, when an individual's focus is not directly on the act of driving and 
his/her mind "wanders". Many non-related driving tasks like speech to text 

system, talking on a cell phone or talking to passenger may generate a 
certain level of cognitive distraction. 

 
Estimate the driver’s cognitive distraction is a very challenging tasks. The 

developed model will be based on indirect observations of non-related driving 
activities combined with a decreased visual scanning of the driving 

environment. The investigations will start in cycle 2. 

2.2.4 Verification and Validation of Driver Models 

2.2.4.1 Driver Intention Recognition  

The first cycle for verification and validation on a component level is 

currently being performed by a joined study with the partners from ULM and 
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OFF. The study is being performed with 48 subjects driving the Peter 
scenario on two driving simulators: one in ULM and the other one located at 

OFF. In the Peter scenario, the TeamMate car is driving on a rural road. A big 
vehicle, which in the validation scenario is a truck, reduces the capturing 

capabilities of different sensors of the car and therefor it is up to the driver to 
support the TeamMate car to decide about the correct point in time for that it 

is safe to initiate the overtaking manoeuvre. This interaction should be 
designed, following the TeamMate approach. The driver and the vehicle work 

together as two teammates, where the vehicle still supports the driver as 

much as possible so the driver only needs to initiate the overtaking 
manoeuvre. 

 
For this first study the driver can initiate the overtaking based on taping the 

indicator or by pressing a button located on the touch screen of a centre 
touch panel. One of the goals is to figure out if there is a difference between 

these two interaction designs.  
 

Figure 2 and figure 3 show the experiment setups for both simulators. For 
the studies both simulators shared the same software setup and also the 

same road and traffic structure. During the slot the road (which is a 
secondary road with only one lane in each direction) changes between 

sections with flat parts and good sight to more curvy ones with forest 
sections that limit the frontal view of the driver to identify potential obstacles 

early. Finally, basic inner city sections are also part of the road track, but for 

this first study that focuses on the Peter scenario intersections are not 
relevant. 

 

 

 Figure 2:  OFFIS driving simulator  
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Figure 3:  ULM driving simulator 

 

Each subject had to drive three slots, taking around 30 minutes to drive. For 
two of the three slots the AutoMate car is driving in automated driving mode 

and therefore the driver is mainly concerned with identifying the correct time 
to initiate an overtaking manoeuvre for those situations in that the AutoMate 

car cannot automatically overtake. 
 

In one slot each subject is driving completely without any automation 

involved. The data collected in this slot is on the one hand, the baseline for 
the AutoMate car and on the other hand, the training and validation data for 

the first version of the driver intention recognition component. Several 
variables will be recorded from the simulator. Besides all driving variables 

from the ego vehicle (for example lateral and longitudinal acceleration) of all 
vehicles are recorded. All these data are needed to validate the driver 

intention model. 

2.2.4.2 Driver Situation Awareness Assessment  

Also the situation awareness of the driver is explored as part of the same 
study. The subject’s eyes are tracked based on remote eye-tracking cameras 

in the UML driving simulator and a head-mounted eye tracker that is used in 
the OFF driving simulator. While the subjects are driving without 

interruptions for each slot, they pass certain identification points (i.e. flow 
points) that trigger specific situations (e.g. the slow vehicle to appear) or 

identify phases of an overtaking manoeuvre (e.g. left lane merge, overtake, 
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right lane merge). The eye tracking data is recorded for all subjects and all 
three slots and the gained data from the study is being explored on changes 

of subjects’ visual situation awareness construction procedures and hedging 
behaviour between manual driving and automated driving situations in that 

the AutoMate car requests driver support to initiate the automated 
overtaking manoeuvre. 

2.2.4.3 Driver state estimation  

In the current state of the project, a final decision about how to test the 

driver monitoring system has not been taken yet and it depends on where 

this system will be implemented (driving simulator, real car or both) and 
what it is possible to evaluate (distraction or drowsiness). 

 
Distraction. 

In this section, we sketch some ideas for distraction2. All in all, driver’s 
distraction – and inattention – is an important safety concern and not a new 

problem in road safety: we may say that it has been around for as long as 
people have been driving cars. It is moreover likely that the problem will 

increase as more wireless or mobile technologies find their way into vehicles. 
Being distracted can make drivers less aware of other road users such as 

pedestrians, cyclists and road workers and less observant of road rules such 
as speed limits and junction controls. 

 
Drivers do much more than control the vehicle when driving (such as: 

adjusting an entertainment system or climate control, consulting maps, 

eating / drinking / smoking, interacting with passengers, and so on). Driver 
distraction occurs when a driver diverts their attention away from the 

activities needed for safe driving. Distracted driving is the state that occurs 
when attention is given to a non-driving related activity, typically to the 

detriment of driving performance. 
 

Here, we focus on a particular type of distraction the visual one, which 
occurs when a driver takes their eyes off the road. Typically this is cause 

when the driver looks away from the road to engage in a secondary activity 
either inside (e.g. radio, telephone) or outside (e.g. signs, advertisements) 

of the vehicle. 
 

As aforementioned, driving is a complex task: a person must engage almost 
all of their mental faculties (in other words, it is not simply about physically 

                                    
2 Drowsiness is not easy to test, because of safety constraints and 

complexity of the tests. A possibility is to have a complete evaluation for 
distraction and to focus only on detection of false positives for drowsiness. 
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controlling the car) so it is not surprising that attention-grabbing distractions 
can interfere with successful and safe completion of the driving task. The 

brain never actually focuses on two tasks at the same time, it switches back 
and forth between them – true ‘multi-tasking’ is a myth. Your performance 

suffers as you struggle to divide your attention (detrimental in accuracy). 
 

In order to evaluate driver’s distraction, dedicated tests have to be carried 
out. For example, a certain number of participants can be asked to drive on 

the dedicated test-site in real-traffic situations, while completing a secondary 

task session. Distraction (visual and manual) can be induced by means of a 
secondary visual research task, called SuRT, reproduced on an in-vehicle 

touch screen (7’’ TFT touch screen installed on the right-hand side of the car 
cabin). SURT was chosen to simulate an IVIS (In Vehicle Information 

System). It requires visual perception and manual response, possibly causing 
a degradation of driving task performances. The situation is depicted in the 

following figures: 
 

 

Figure 4: sketch of how the SuRT works and possible location inside the 

vehicle cockpit. 

 
Participants are presented with a set of stimuli on a touch screen (e.g. a 

tablet or a smart phone) which can be mounted on the right side of the 
steering wheel in reach of the driver’s right arm. The time interval between 

two consecutive screens was pseudo-randomized between 3 and 9 seconds. 
The output data are the reaction times and the error rates. 

 
At the moment the use of this methodology (represented by SuRT) is still 

under discussion. Alternatively, it can be used a secondary task based on 

reading aloud a sequence of random letters, with a predefined duration. 

Target to search

Display where the 
SuRT was projected
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2.3 Enabler 3: Vehicle & situation models  

As described in the DOW the objectives of enabler 3 are to infer an 

integrated probabilistic vehicle and situation model from the data provided 
by Enabler 1 (incl. information from other TeamMate Cars). The model will 

integrate and represent all traffic participants in the surroundings of the 
TeamMate Car as well as the dynamic characteristics of the own vehicle. This 

will be done in a way, which is consistent to human situation understanding 
e.g. by applying scene understanding/classification techniques to put the 

recognized objects in relation with each other.  

 

2.3.1 Joint Directors of Laboratories (JDL) fusion model  

To realize the vehicle and situation modelling, we propose using the Joint 
Directors of Laboratories (JDL) fusion model as it provides an established and 

time proven approach to handling complex environments. It was initially 
developed for military applications and later adapted to the use in an 

automotive context (Polychronopoulos & al., 2006). For the purpose of 
AutoMate, we will employ tailored version of the JDL model (see Figure 5). 

The perception and the decision/situation layer of the proposed model are 
explained in the next subsections. 

 

 
Figure 5: simplified version of the JDL model for sensor data fusion 

 

The perception layer consists of the sensor and object level. In the first step, 
sensor data are pre-processed on the sensor level. GPS, (stereo) camera, 

RADAR and laser scanner are widely used sensors. A digital map server is 
also a potential sensor. All sensors must be calibrated with respect to a 
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common coordinate system and synchronized. The situation layer doesn’t 
need a direct access to the sensor level since data needed for the situation 

modelling und interpretation are provided by the object level. The object 
level must be able to forward sensor data to the situation layer. The sensor 

data (e.g. camera images) can be used on the situation level for visualization 
as well as verification and validation. 

 
In the second step, pre-processed sensor data from the sensor level are used 

for object detection. Detected objects are fused and tracked over the time. 

Moreover, highly-accurate information about the road (road markings, curb, 
etc.), traffic infrastructure (traffic light, traffic signal, etc.) and free space is 

extracted. These data can be recorded offline as a digital map and/or 
detected during driving. The ego-pose and –motion are also estimated on 

this layer. The data generated on the perception layer are inputs for the 
situation modelling and understanding. More details on the perception layer 

can be found in the subsection 2.1. 
On the decision layer, inputs from the perception layer are integrated into a 

situation model. The situation model is enriched with semantic information 
and used to predict the evolution on the situation. Another part on the 

Decision layer is the threat assessment where the situation criticality is 
estimated. Such issues are addressed in WP3. 

 

2.3.2  Vehicle and Situation Models  

For the driver models developed for intention recognition and online risk 

assessment, the situation model is intended as an intermediate layer 
between the sensor and communication platform and the subsequent driver-, 

and vehicle-models and online risk assessment. More specifically, the 
situation model represents a subset of the TeamMate vehicle’s current belief 

about the world based on sensor observations and it is assumed that the 
information of the situation model is updated via the sensor and 

communication platform in constant tie intervalsΔ𝑡. 
 

In general, the situation model is assumed to maintain information about the 

current state of the TeamMate vehicle, the current states of a number of 
objects recognized in the vicinity of the TeamMate vehicle and a description 

of the environment. More specifically, we assume the existence of a map 𝑀 

centered at the current position of the TeamMate vehicle that allows 

reasonable reconstruct the course of the road in the vicinity of the TeamMate 
vehicle. For now, we don’t specify the exact format. 
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Concerning the TeamMate vehicle, the situation model is assumed to 
maintain information about the current state of the TeamMate vehicle, 

represented by a set of variables as described in Table1: 
𝑿𝑇𝑀
𝑡 =

{𝑋𝑇𝑀
𝑡 , 𝑌𝑇𝑀

𝑡 , Θ𝑅
𝑡
𝑇𝑀
, Θ𝐴

𝑡
𝑇𝑀
, 𝐷𝑇𝑀

𝑡 , 𝐿𝑇𝑀
𝑡 , 𝑉𝑇𝑀

𝑡 , 𝐴𝑇𝑀
𝑡 ,𝑊𝑇𝑀

𝑡 , 𝑆𝐿
𝑡
𝑇𝑀
, 𝑆𝑊
𝑡
𝑇𝑀
, A𝐴
𝑡
𝑇𝑀
, A𝐵
𝑡
𝑇𝑀
, A𝑆
𝑡
𝑇𝑀
, 𝐺𝑇𝑀

𝑡 }.  

 

Table 1: Description of variables for the representation of the TeamMate 

vehicle considered for the first cycle. 

Variable Type Unit Description 
𝑋𝑇𝑀 Continuous [m] X-coordinate of the center of the 

TeamMate vehicle in a two-dimensional 

spatial coordinate system relative to an 
origin synchronized with the map 𝑀 

𝑌𝑇𝑀 Continuous [m] Y-coordinate of the center of the 

TeamMate vehicle in a two-dimensional 
spatial coordinate system relative to an 

origin synchronized with the map 𝑀 
ΘR𝑇𝑀 Continuous [rad] Yaw-angle relative to a global x-axis 

synchronized with the map 𝑀 
ΘA𝑇𝑀 Continuous [rad] Yaw-angle relative to the course of the 

road at the TeamMate’s location 
𝐷𝑇𝑀 Continuous [m] Lateral deviation to a reference on the 

road at the TeamMate’s location, e.g. the 

centerline on a two-lane road 
𝐿𝑇𝑀 Discrete {0, … , ⌊𝐿𝑇𝑀⌋} The lane, the TeamMate is currently 

located in, e.g. fast or slow lane on a 
two-lane road 

𝑉𝑇𝑀 Continuous [m/s] Longitudinal velocity along the heading 
𝐴𝑇𝑀 Continuous [m/s²] Longitudinal acceleration 
𝑊𝑇𝑀 Continuous [rad/s] Yaw-rate 
𝑆𝐿𝑇𝑀 Continuous [m] Length (along the x-axis)  

𝑆𝑊𝑇𝑀
 Continuous [m] Width (along the y-axis)  

𝐴𝐴𝑇𝑀 Continuous [%] Activation of the acceleration pedal  

𝐴𝐵𝑇𝑀 Continuous [%] Activation of the braking pedal  

𝐴𝑆𝑇𝑀 Continuous [rad] Steering wheel angle  

𝐺𝑇𝑀 Discrete {0, … , ⌊𝐺𝑇𝑀⌋} Selected gear  

 
Within the situation model, the TeamMate state is expected to be provided 

as a probability density function (pdf) 𝑝(𝑿𝑇𝑀
𝑡 |𝒐1:𝑡), the belief state about the 

state of the TeamMate vehicle given all sensor information up to the current 
point in time 𝑡. For the first cycle, 𝑝(𝑿𝑇𝑀

𝑡 |𝒐1:𝑡) is assumed to be provided in 

factorized form,  
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𝑝(𝑿𝑇𝑀
𝑡 |𝒐1:𝑡) = ∏ 𝑝(𝑋𝑡|𝒐1:𝑡)

𝑋∈𝑿𝑇𝑀

, 

where each pdf 𝑝(𝑋𝑡|𝒐1:𝑡) over a continuous variable 𝑋 ∈ 𝑿𝑇𝑀
𝑡  is provided as a 

Normal distribution 𝑝(𝑋𝑡|𝒐1:𝑡) = 𝑁 (𝑋𝑡|𝜇𝑋
𝑡 , 𝜎𝑋

𝑡2), with mean and variance 

provided by the sensor and communication platform, while each probability 
mass function over a discrete variable  𝑌 ∈ 𝑿𝑇𝑀

𝑡  is provided as a vector 

denoting the probabilities for each 𝑦 ∈ 𝑌. Where such information cannot be 

provided directly by the sensor and communication platform, it is expected 
to be derived by a semantic enrichment of the situation model. 

 
Concerning other traffic participants and objects, let 𝑚 denote the number of 

recognized objects in the vicinity of the TeamMate vehicle 𝑶 = (𝑂1, … , 𝑂𝑚), 
each object 𝑂 ∈ 𝑶 is assumed to be represented by a set of variables 𝑿𝑂

𝑡 =

{𝑋𝑂
𝑡 , 𝑌𝑂

𝑡 , Θ𝑂
𝑡 , 𝑉𝑂

𝑡, 𝐴𝑂
𝑡 ,𝑊𝑂

𝑡 , 𝑆𝐿
𝑡
𝑂
, 𝑆𝑊
𝑡
𝑂
, 𝐸𝑂

𝑡 , 𝐶𝑂
𝑡 , 𝐿𝑂

𝑡 }, described in Table 2 and provided as a 

belief state 𝑝(𝑿𝑂
𝑡 |𝒐1:𝑡). As for the TeamMate vehicle, for the first cycle, 

𝑝(𝑿𝑂
𝑡 |𝒐1:𝑡) is assumed to be provided in factorized form. More specifically, let 

𝑿 ⊂ 𝑿𝑂 denote the set of continuous variables and 𝒀 ⊂ 𝑿𝑂 it is assumed that 
𝑝(𝑿𝑂

𝑡 |𝒐1:𝑡) is given by 

𝑝(𝑿𝑂
𝑡 |𝒐1:𝑡) =∏𝑝(𝑋𝑡|𝐸𝑂

𝑡 = true, 𝒐1:𝑡)

𝑋∈𝑿

∏𝑝(𝑌𝑡|𝒐1:𝑡)

𝑌∈𝒀

, 

where each pdf 𝑝(𝑋𝑡|𝐸𝑂
𝑡 = true, 𝒐1:𝑡) over a continuous variable 𝑋 ∈ 𝑿 is 

provided as a Normal distribution 𝑝(𝑋𝑡|𝐸𝑂
𝑡 = true, 𝒐1:𝑡) = 𝑁 (𝑋𝑡|𝜇𝑋

𝑡 , 𝜎𝑋
𝑡2), with 

mean and variance provided by the sensor and communication platform, 

while each probability mass function over a discrete variable 𝑌 ∈ 𝒀 is provided 

as a vector denoting the probabilities for each 𝑦 ∈ Val(𝑌). For the most part, 
the information represented by 𝑿𝑂

𝑡  should be considered standard for current 

LIDAR sensors. Where such information cannot be provided directly by the 

sensor and communication platform, it is expected to be derived by a 
semantic enrichment of the situation model. 

Table 2: Description of variables for the representation of an object 𝑶 ∈ 𝑶 in 

the vicinity of the TeamMate vehicle considered for the first cycle. 

Variable Type Unit Description 
𝑋𝑂 Continuous [m] X-coordinate of the center of the object 𝑂 ∈

𝑶 in a two-dimensional spatial coordinate 

system relative to the position of the 
TeamMate vehicle 

𝑌𝑂 Continuous [m] Y-coordinate of the center of the object 𝑂 ∈
𝑶 in a two-dimensional spatial coordinate 

system relative to the position of the 

TeamMate vehicle 
Θ𝑂 Continuous [rad] Yaw-angle relative to a reference axis 
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V𝑂 Continuous [m/s] Longitudinal velocity along the objects 
heading 

A𝑂 Continuous [m/s²] Longitudinal acceleration 
W𝑂 Continuous [rad/s] Yaw-rate  
S𝐿𝑂 Continuous [m] Length (along the x-axis)  

S𝑊𝑂
 Continuous [m] Width (along the y-axis)  

E𝑂 Binary {true,false} Binary flag, whether the object 𝑂 ∈ 𝑶 exists 

in the current traffic scene. 
C𝑂 Discrete {0, … , ⌊C𝑂⌋} Classification of the object 𝑂 ∈ 𝑶, e.g. PKW, 

LKW, VRU, etc. 
𝐿𝑂 Discrete {0, … , ⌊L𝑂⌋} The lane, the object 𝑂 ∈ 𝑶 is currently 

located in, e.g. fast or slow lane on a two-

lane road 

 

2.3.3 Semantic enrichment of the situation model 

The goal of the semantic enrichment is to extend the inputs from the 
perception layer with semantic information. For this purpose, we propose 

ontology extended with logical rules in the first cycle of this project. An 
ontology is a semantic model that represents domain knowledge using 

concepts and relations. A modelled ontology can be used to reason about 
new complex relations and facts. For this work, we used the Web Ontology 

Language (OWL) 2 (Motik & al., 2009) and the Semantic Web Rule Language 
(SWRL) (Horrocks & al., 2004) to model the ontology and logical rules. 

Figure 6 shows an overview of the taxonomy (“has subclass”) and the 
relations we modelled in the ontology for this cycle using Protégé (Musen & 

al, 2015). Scene objects as pedestrian, vehicle, traffic light, traffic signal and 
road are concepts of this ontology. The relations between those scene 

objects are spatial, temporal and semantic.  

 
These relations are divided into three main classes: 

1. Assignment of roads/lanes to traffic participants (“is_on”) as well as 
traffic lights and signals (“street_has_trafficlight”, “street_has_sign”) 

using map matching, 
2. Assignment of traffic lights and signals to allowed maneuvers 

(“signal_maneuver”) based on traffic rules, 
3. Assignement of traffic participants allowed maneuvers 

(“allowed_maneuver”) and maximal velocity (“has_max_speed_value”) 
according to the traffic rules. 
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Figure 6: Overview of the proposed ontology taxonomy (left) and the 

relations legend (right). See color version of the image for more details. 

Based on the relations and concepts of the ontology presented above, SWRL 

rules describing basics traffic rules are modelled. These SWRL rules cover 
following part of the traffic rules (see Table 3): 

1. Definition of manoeuvres associated with traffic lights and signals 
(rules R1 to R3) 

2. Definition of allowed manoeuvres on a road depending on the assigned 

traffic lights and signals (rules R4 and R5) 
3. Definition of traffic participant allowed manoeuvres and maximal 

velocity depending on the road assigned to the traffic participant (rules 
R6 and R7) 

 

Table 3: examples of SWRL rules for basic traffic rules 

Name Rule Meaning 

R1 𝑠𝑡𝑜𝑝_𝑠𝑖𝑔𝑛(? 𝑠) ^ 𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(?𝑚) ^ 
𝑠𝑖𝑔𝑛𝑎𝑙_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑠, ?𝑚)  →  𝑠𝑡𝑜𝑝(?𝑚) 

Stop sign allows stop 

maneuver  
R2 𝑔𝑖𝑣𝑒_𝑤𝑎𝑦_𝑠𝑖𝑔𝑛(? 𝑠) ^ 𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(?𝑚) ^ 

𝑠𝑖𝑔𝑛𝑎𝑙_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑠, ?𝑚)  →  𝑠𝑙𝑜𝑤_𝑑𝑜𝑤𝑛(?𝑚) 
Give way sign allows 

slow maneuver 
R3 𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑙𝑖𝑔ℎ𝑡(? 𝑙) ^ ℎ𝑎𝑠_𝑡𝑙_𝑠𝑡𝑎𝑡𝑒(? 𝑙, ? 𝑠) ^ 𝑟𝑒𝑑_𝑙𝑖𝑔ℎ𝑡(? 𝑠) ^ 

𝑠𝑖𝑔𝑛𝑎𝑙_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑙, ?𝑚)  →  𝑠𝑡𝑜𝑝(?𝑚) 
Red traffic light allows 

stop maneuver 
R4 𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑙𝑖𝑔ℎ𝑡(? 𝑙) ^ 𝑟𝑜𝑎𝑑(? 𝑟) ^ 𝑟𝑜𝑎𝑑_𝑠𝑖𝑔𝑛(? 𝑠) ^ 

𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑙𝑖𝑔ℎ𝑡_𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑡𝑜_𝑠𝑡𝑟𝑒𝑒𝑡(? 𝑙, ? 𝑟) ^ 
𝑠𝑖𝑔𝑛_𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑡𝑜_𝑠𝑡𝑟𝑒𝑒𝑡(? 𝑠, ? 𝑟) ^ 

𝑠𝑖𝑔𝑛𝑎𝑙_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑠, ?𝑚) ^ 𝑠𝑖𝑔𝑛𝑎𝑙_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑙, ?𝑚2)  
→  𝑠𝑡𝑟𝑒𝑒𝑡_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑟, ?𝑚2) 

Traffic lights has high 

priority comparing to 
traffic signs, if both 

are assigned to the 
same road 

R5 𝑟𝑜𝑎𝑑(? 𝑟) ^ 𝑟𝑜𝑎𝑑_𝑠𝑖𝑔𝑛(? 𝑠) ^  
𝑠𝑖𝑔𝑛_𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑡𝑜_𝑠𝑡𝑟𝑒𝑒𝑡(? 𝑠, ? 𝑟) ^ 

𝑛𝑜_𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑙𝑖𝑔ℎ𝑡_𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑡𝑜_𝑠𝑡𝑟𝑒𝑒𝑡(? 𝑟, 𝑡𝑟𝑢𝑒) ^ 
𝑠𝑖𝑔𝑛𝑎𝑙_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑠, ?𝑚)  →  𝑠𝑡𝑟𝑒𝑒𝑡_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑟, ?𝑚) 

maneuver allowed on 
that road depend on 

the assigned traffic 
sign where there is 
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no traffic light 
R6 𝑚𝑜𝑏𝑖𝑙𝑒_𝑜𝑏𝑗𝑒𝑐𝑡(? 𝑜) ^ 𝑟𝑜𝑎𝑑(? 𝑟) ^ 

𝑠𝑡𝑟𝑒𝑒𝑡_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑟, ?𝑚) ^ 𝑖𝑠_𝑜𝑛(? 𝑜, ? 𝑟)  
→  𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟(? 𝑜, ?𝑚) 

Traffic participants 

allowed maneuvers 
depend on the road 

there are on 
R7 𝑟𝑜𝑎𝑑(? 𝑟) ^ 𝑟𝑜𝑎𝑑_𝑣𝑒ℎ𝑖𝑐𝑙𝑒(? 𝑜) ^ 𝑖𝑠_𝑜𝑛(? 𝑜, ? 𝑟) ^  

ℎ𝑎𝑠_𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑_𝑣𝑎𝑙𝑢𝑒(? 𝑟, ? 𝑣) 
→  ℎ𝑎𝑠_𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑_𝑣𝑎𝑙𝑢𝑒(? 𝑜, ? 𝑣) 

Vehicles allowed 

maximal velocity 
depend on the road 

there are on 

 
For testing the modelled ontology and traffic rules, we generated the scene 

in Figure 7. In this scene, the ego-vehicle (red) is approaching an 
intersection, where the traffic light is red. Another vehicle is approaching the 

intersection on a lane with green light. Based on this scene, individuals are 
generated for: 

 
 the vehicles (“Vehicle(?vh1)” and “Vehicle(?vh1)” ), 

 the traffic lights (“Traffic_light(?tl1)” and “Traffic_light(?tl2)”), 
 the traffic lights states (“Red_light(?tlst1)”and “Green_light(?tlst2)”), 

 the maneuvers (“Maneuver(?mn1)”and “Maneuver(?mn2)”) which will 

be inferred, and 
 the roads (“Road(?street1)”, “Road(?street2)”) 

 
Furthermore traffic lights and vehicles are matched to the corresponding 

roads using the relations “Is_on(?vh1,?street1)”, “Is_on(?vh2,?street2)”, 
“Trafficlight_assigned_to_street(?tl1,?street1)“ and 

“Trafficlight_assigned_to_street(?tl2,?street2)“. Traffic lights states are set 
using the relations “Has_tl_state(?tl1,?tlst1)” and “Has_tl_state(?tl2,?tlst2)”.  

The “Pellet” reasoner available on Protégé infers the allowed maneuvers for 
each vehicle individual according to the traffic rules. The allowed maneuver 

“Allowed_maneuver(?vh1,?mn1)” inferred for “Vehicle(?vh1)” is 
“Stop(?mn1)”, meaning that this vehicle must stop due to the red light. For 

“Vehicle(?vh2)” the inference result “Drive(?mn2)” allows this vehicle to 
drive since the traffic light assigned to the road this vehicle is driving on is 

green. Based on the inference results, we can conclude that the ontology and 

logical rules can be used to infer traffic participants allowed maneuvers 
according to the traffic rules. 

 
The allowed manoeuvres inferred by the reasoner will be used in the second 

project cycle for predicting the traffic evolution. For that, we will develop an 
interface allowing us to integrate the ontology, the logical rules and the 

reasoner results into the situation interpretation module working on real 
traffic data. 
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Figure 7: illustration of the semantic erichment at an intersection based on 

the ontology and logical rules. 

 

2.3.4 Predicting the future evolution of the traffic scene 

The purpose of vehicle models is to predict the future evolution of the traffic 

scene based on the information represented by the situation-model and the 
use of vehicle-models as a necessary input for online risk assessment (for 

more information on online risk assessment, we refer to the deliverable D3.3 
“Concepts and algorithms incl. V&V results from 1st cycle”). 

 

2.3.4.1 Vehicle-Models 

In this context, vehicle models should be understood as motion models. 
Based on a comparison and evaluation of motion models for vehicle tracking 

(Schubert et al., 2008) and their successful use for risk assessment for 
collision avoidance systems (Houenou et al., 2013, 2014), we use the so-

called Constant Turn Rate and Acceleration (CTRA) (Schubert et al., 2008), 
resp. Constant Yaw-Rate and Acceleration (CYRA) motion model (Houenou et 

al., 2013, 2014). The CYRA model is based on a state space 
𝒔𝑡 = (𝑥𝑡 , 𝑦𝑡, 𝜃𝑡, 𝑣𝑡, 𝑎𝑡 , 𝑤𝑡)𝑇 , 
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where 𝑥 and 𝑦 (in 𝑚) denote the spatial coordinates of the center of the 

vehicle, 𝜃 (in 𝑟𝑎𝑑) denotes the yaw angle in respect to a reference axis, 𝑣 (in 

𝑚/𝑠) denotes the longitudinal velocity along the heading, 𝑎 (in 𝑚/𝑠2) denotes 

the longitudinal acceleration, and 𝑤 (in 𝑟𝑎𝑑/𝑠) denotes the yaw-rate. The 

state transition equation for this model is given by 

𝒔𝑡+Δ𝑡 =

(

 
 
 

𝑥𝑡+Δ𝑡

𝑦𝑡+Δ𝑡

𝜃𝑡+Δ𝑡

𝑣𝑡+Δ𝑡

𝑎𝑡

𝑤𝑡 )

 
 
 
= 𝑓𝐶𝑌𝑅𝐴(𝒔

𝑡), 

with  

𝑥𝑡+Δt =

{
 

 𝑥𝑡 +
1

𝑤𝑡
[
𝑎𝑡

𝑤𝑡
(cos 𝜃𝑡+Δt − cos 𝜃𝑡) + 𝑣𝑡+Δt sin 𝜃𝑡+Δt − 𝑣𝑡 sin 𝜃𝑡] , 𝑤𝑡 ≠ 0

𝑥𝑡 + (
1

2
𝑎𝑡(Δ𝑡)2 + Δ𝑡 𝑣𝑡) cos 𝜃𝑡 , 𝑤𝑡 = 0

, 

𝑦𝑡+Δt =

{
 

 𝑦𝑡 +
1

𝑤𝑡
[
𝑎𝑡

𝑤𝑡
(sin 𝜃𝑡+Δt − sin 𝜃𝑡) − 𝑣𝑡+Δt cos 𝜃𝑡+Δt − 𝑣𝑡 cos 𝜃𝑡] , 𝑤𝑡 ≠ 0

𝑦𝑡 + (
1

2
𝑎𝑡(Δ𝑡)2 + Δ𝑡 𝑣𝑡) sin 𝜃𝑡 , 𝑤𝑡 = 0

, 

𝜃𝑡+Δ𝑡 = 𝜃𝑡 + Δ𝑡 𝑤𝑡, 
and  

𝑣𝑡+Δ𝑡 = 𝑣𝑡 + Δ𝑡 𝑎𝑡 . 
 

2.3.4.2 Unscented Transformation  

In the following, let 𝑺𝑂
𝑡 = {𝑋𝑂

𝑡 , 𝑌𝑂
𝑡 , Θ𝑂

𝑡 , 𝑉𝑂
𝑡, 𝐴𝑂

𝑡 ,𝑊𝑂
𝑡} denote a reduced set of state 

variables for an object 𝑂 ∈ 𝑶 and let 𝑝(𝑺𝑂
𝑡 |𝐸𝑂

𝑡 = true, 𝒐1:𝑡) denote our beliefs 

about 𝑂, given all observed sensor values up to the current point in time, 

and given that said object 𝑂 is actually existing. We can obtain a prediction 

for a future time step  𝑝(𝑺𝑂
𝑡+Δ𝑡|𝐸𝑂

𝑡 = true, 𝒐1:𝑡) via unscented transformation 

(Wan and Van der Merwe, 2000, Murphy, 2012). The basic idea is as follows:  
Under the assumption that 𝑝(𝑺𝑂

𝑡 |𝐸𝑂
𝑡 = true, 𝒐1:𝑡) is a multivariate Gaussian 

𝑁(𝑺𝑂
𝑡 |𝝁𝑂

𝑡 , Σ𝑂
t ), we’d like to estimate 𝑝(𝑺𝑂

𝑡+Δ𝑡|𝐸𝑂
𝑡 = true, 𝒐1:𝑡) as a multivariate 

Gaussian 𝑁(𝑺𝑂
𝑡+Δ|𝝁𝑂

𝑡+Δ, Σ𝑂
t+Δ), where 𝑺𝑂

𝑡+Δ = 𝑓𝐶𝑌𝑅𝐴(𝑺𝑂
𝑡 ), with 𝑓𝐶𝑌𝑅𝐴 being the 

nonlinear function given by the CYRA motion model. Following Murphy 

(2012), let 𝑑 = 6 denote the dimension of the multivariate Gaussian, we 

create a set of 2𝑑 + 1 sigma vectors 𝒔𝑖
𝑡, where  

𝒔0
𝑡 = 𝝁𝑂

𝑡 , 

𝒔𝑖
𝑡 = 𝝁𝑂

𝑡 + (√(𝑑 + 𝜆)Σ𝑂
t )

:𝑖

, 𝑖 = 1,… , 𝑑, 
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𝒔𝑖
𝑡 = 𝝁𝑂

𝑡 − (√(𝑑 + 𝜆)Σ𝑂
t )

:𝑖−𝑑

, 𝑖 = 𝑑 + 1,… ,2𝑑, 

and a corresponding set of 2𝑑 + 1 sigma weights for both mean 𝑤𝑚,𝑖 and 

covariance 𝑤𝑐,𝑖, where 

𝑤𝑚,0 =
𝜆

𝑑 + 𝜆
, 

𝑤𝑐,0 =
𝜆

𝑑 + 𝜆
+ (1 − 𝛼2 + 𝛽), 

𝑤𝑚,𝑖 = 𝑤𝑐,𝑖 =
1

2(𝑑 + 𝜆)
, 𝑖 = 1,… ,2𝑑. 

Here, (√(𝑑 + 𝜆)Σ𝑂
t )

:𝑖
 denotes the 𝑖th column of the (scaled) square-root matrix 

of Σ𝑂
t , 𝜆 = 𝛼2(𝑑 + 𝑘) − 𝑑 is a scaling parameter, with 𝛼 and 𝑘 being 

corresponding parameters that determine the spread of sigma vectors 

around the mean, while 𝛽 can be used to incorporate prior information on 

(non-Gaussian) distributions. For 𝑑 = 1, Murphy (2012) states optimal values 

as 𝛼 = 1, 𝛽 = 0, and 𝑘 = 2, which we adopt for unscented transformation in 

AutoMate for the time being. We propagate these sigma vectors through the 

nonlinear function to obtain a transformed set of sigma vectors 𝒔𝑖
𝑡+Δ: 

𝒔𝑖
𝑡+Δ𝑡 = 𝑓𝐶𝑌𝑅𝐴(𝒔𝑖

𝑡). 

The mean 𝝁𝑂
𝑡+Δ for 𝑁(𝑺𝑂

𝑡+Δ|𝝁𝑂
𝑡+Δ, Σ𝑂

t+Δ) is then computed from this transformed 

sigma vectors as  

𝝁𝑂
𝑡+Δ =∑𝑤𝑚

𝑖 𝒔𝑖
𝑡+Δ

2𝑑

𝑖=0

, 

and its covariance Σ𝑂
t+Δ is given by 

Σ𝑂
t+Δ =∑𝑤𝑐

𝑖(𝒔𝑖
𝑡+Δ − 𝝁𝑂

𝑡+Δ)(𝒔𝑖
𝑡+Δ − 𝝁𝑂

𝑡+Δ)
𝑇

2𝑑

𝑖=0

. 

Given this, let 𝑛 denote the desired prediction horizon, we predict the future 

evolution of the traffic scene, by estimating 𝑝(𝑺𝑂
𝑡+𝑖Δ𝑡|𝐸𝑂

𝑡 = true, 𝒐1:𝑡), 𝑖 = 1, … , 𝑛 

for each object 𝑂 ∈ 𝑶 known to the TeamMate vehicle. 

For the first cycle, the prediction of the future evolution of the traffic scene 

makes strong simplifications. The vehicle models are based on the 
assumptions of constant accelerations and yaw-rates. By now, the algorithm 

does not incorporate knowledge about the map 𝑀 into our predictions of the 

future state of other objects, i.e., the algorithm assumes that everything 

evolves statically. These limitations will be addressed in future cycles. 

 

2.3.5  V+V of Vehicle and Situation Models  

As of now, the prediction of the temporal and spatial evolution of the traffic 
scene via the CYRA vehicle model (Section 2.3.4.1) has been implemented 
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for surrounding traffic participant under the assumption that the necessary 
input can be provided (Figure 8). The corresponding functionality has been 

tested using inputs provided by the SILAB simulation environment used at 
the OFFIS Institute for Information Technology. 

 

 

Figure 8: Screenshot of an exemplary visualization of the 95% prediction ellipses 

of the position of the lead vehicle (red). The coloured rectangles represent vehicles 

in the vicinity of the TeamMate vehicle (white rectangle). Blue lines indicate 

heading vectors, the purple line represents the centreline of a two-lane motorway. 

For validation purposes, we tested the preliminary “correctness” of the 

vehicle models on data sets obtained in simulator driving studies in the 

SILAB simulation environment. The data set comprises a time-series of 
295123 training samples, recorded with a frequency of 60Hz, with each 

sample containing the data representing the necessary input of up to eight 
vehicles in the vicinity of the TeamMate vehicle, up to two vehicles on the 

current and adjacent lanes, both in front and behind the TeamMate vehicle. 
Let 𝒔𝑣

𝑡 = {𝑥𝑣
𝑡 , 𝑦𝑣

𝑡, 𝜃𝑣
𝑡, 𝑣𝑣

𝑡 , 𝑎𝑣
𝑡 , 𝑤𝑣

𝑡} denote the ground truth of the state of a vehicle 𝑣 
in the vicinity of the TeamMate vehicle at a time 𝑡 in the data set, and 𝑐𝑡 
denote the current curvature of the road, we used the following estimate for 
our initial belief state 𝑝(𝑺𝑣

𝑡 |𝐸𝑣
𝑡 = true, 𝒐1:𝑡): 

 
𝑝(𝑺𝑣

𝑡 |𝐸𝑣
𝑡 = true, 𝒐1:𝑡)

= 𝑁

(

 
 
 
 

𝝁 =

(

 
 
 
 

𝑥𝑣
𝑡

𝑦𝑣
𝑡

𝜃𝑣
𝑡

𝑣𝑣
𝑡

0
𝑣𝑣
𝑡 ∗ 𝑐𝑡)

 
 
 
 

, 𝚺 =

(

 
 
 

0.052 0 0 0 0 0
0 0.052 0 0 0 0
0 0 0.012 0 0 0
0 0 0 1.02 0 0
0 0 0 0 2.02 0
0 0 0 0 0 0.12)

 
 
 

)

 
 
 
 

. 

 

Due to the nature of simulated traffic realized by a kind of bang-bang 
controller, we replaced the true acceleration by zero and the true yaw rate 

the required yaw rate to follow the course of the road (if aligned with the 
road), but added a high uncertainty on the actual estimate. 

 

At each time step 𝑡 and each vehicle 𝑣 within the sensor range of the 

TeamMate vehicle, we estimated the belief states of the future state of the 

vehicle 𝑝(𝑺𝑣
𝑡+i|𝐸𝑣

𝑡 = true, 𝒐1:𝑡) for a set of prediction horizons of 𝑖 = 1, … ,10 
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seconds, from which we derived marginalized two-dimensional belief states 

𝑝(𝑋𝑣
𝑡+i, 𝑌𝑣

𝑡+𝑖|𝐸𝑣
𝑡 = true, 𝒐1:𝑡) and marginalized three-dimensional belief states 

𝑝(𝑋𝑣
𝑡+i, 𝑌𝑣

𝑡+𝑖, Θ𝑣
𝑡+𝑖|𝐸𝑣

𝑡 = true, 𝒐1:𝑡).  

 

At each subsequent time step 𝑡 + 𝑖, we then checked, whether the true 

marginalized state of the vehicle (𝑥𝑣
𝑡+𝑖, 𝑦𝑣

𝑡+𝑖, 𝜃𝑣
𝑡+𝑖), resp. (𝑥𝑣

𝑡+𝑖, 𝑦𝑣
𝑡+𝑖) was located 

within the 50%, 90%, 95%, and 99% prediction ellipses derived from 

marginalized two-dimensional belief states 𝑝(𝑋𝑣
𝑡+i, 𝑌𝑣

𝑡+𝑖|𝐸𝑣
𝑡 = true, 𝒐1:𝑡) and 

marginalized three-dimensional belief states 𝑝(𝑋𝑣
𝑡+i, 𝑌𝑣

𝑡+𝑖, Θ𝑣
𝑡+𝑖|𝐸𝑣

𝑡 = true, 𝒐1:𝑡). For 

the two-dimensional belief states, we furthermore calculated the mean 

cartesian distance between the actual position (𝑥𝑣
𝑡+𝑖, 𝑦𝑣

𝑡+𝑖) and the expected 

position 𝐸[𝑋𝑣
𝑡+i, 𝑌𝑣

𝑡+𝑖|𝐸𝑣
𝑡 = true, 𝒐1:𝑡]. The resulting data was aggregated over all 

different vehicles to derive the percentage of vehicles outside the 
corresponding prediction ellipse for each temporal prediction horizon. The 

results are summarized in Table 4. We note that limited (simulated) sensor 
range of ∓200m for the detection of surrounding vehicles and a detection 

based on the spatial relation between the different vehicles, make it possible 

that a vehicle was outside the sensor range prior to entering temporal 
intervals, leading to a reduction of counts as apparent in Table 4. 

Table 4: Validation results for the use of implemented vehicle models for predicting 

the spatial and temporal evolution of the traffic scenes at different future time 

steps. Bracketed percentages outside prediction ellipses were obtained by 

comparing the three-dimensional states. 

Prediction 

Horizon 

Number 

of 

samples 

Percentage 

Outside 

50% 

Prediction 

Ellipse 

Percentage 

Outside 

90% 

Prediction 

Ellipse 

Percentage 

Outside 

95% 

Prediction 

Ellipse 

Percentage 

Outside 

99% 

Prediction 

Ellipse 

Mean 

Cartesian 

Distance 

1s 1239231 
5.664 

(8.230) 

3.616 

(6.056) 

3.206 

(5.568) 

2.529 

(4.667) 
2.075 

2s 1213792 
5.957 

(12.347) 

2.709 

(8.814) 

2.237 

(8.316) 

1.849 

(7.584) 
4.730 

3s 1190865 
4.165 

(15.630) 

2.204 

(11.964) 

1.891 

(11.391) 

1.445 

(10.526) 
8.022 

4s 1170298 
3.423 

(19.942) 

1.643 

(14.881) 

1.329 

(14.050) 

0.933 

(12.885) 
12.157 

5s 1151489 
2.974 

(26.991) 

1.167 

(20.054) 

0.958 

(18.858) 

0.638 

(17.157) 
17.209 

6s 1133906 
2.457 

(37.342) 

0.890 

(28.780) 

0.689 

(27.125) 

0.421 

(24.615) 
24.650 

7s 1116738 
1.990 

(48.402) 

0.670 

(39.689) 

0.501 

(37.814) 

0.334 

(34.770) 
33.403 

8s 1099544 
1.659 

(55.335) 

0.522 

(47.066) 

0.403 

(45.217) 

0.252 

(42.186) 
42.430 

9s 1082839 
1.441 

(56.384) 

0.436 

(47.056) 

0.318 

(45.014) 

0.247 

(41.721) 
51.093 
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10s 1066314 
1.257 

(57.506) 

0.347 

(45.965) 

0.291 

(43.497) 

0.273 

(39.643) 
60.405 

 

As apparent, the percentage outside the dedicated prediction ellipse for the 

three-dimensional states quickly exceeds the expected percentage with 
extended prediction horizons. Furthermore, although the percentages for the 

two-dimensional states are mostly below the expected percentages and fall 
with exceeded prediction horizons, this result is only achieved by a 

corresponding inflation of the prediction ellipses, as indicated by the mean 
Cartesian distance (c.f. Figure 8).  

 
For future cycles, we will test to improve these preliminary results by 

incorporating knowledge and expectations of the future course of the road, 
potential manoeuvres, and potential interactions between vehicles. 

The tests protocols, the vehicles or simulator and the scenarios are still to be 
defined in discussion with the partners.  

It is already planned that the situation model and the driver state will be 
integrated and test in the VED demonstrator, these two modules will enrich 

the feasibility of the system in the case of the project and will help to ensure 

good transitions between the driver and the teammate system. VEDECOM 
will focus on the Martha scenario, this scenario will be tested, first on the 

Satory High speed track with an emulation of real situations and on an open 
road (the A86 highway) under constraint of having the legal authorizations 

from the local authorities. The scenario will be tested on 40 participants. In a 
second hand, if time permits it, we are interested to test the urban use 

cases. 
 

3 Instantiation of the Automate platform  

The three following scenarios instance the automate platform. Here a general 
description of the scenarios is provided; more details are available on D1.1 

“Definition of framework, scenarios and requirements” and, for a refinement of 
Cycle 2, in D1.3 “Definition of framework, scenarios and requirements” (currently 

in progress): 
 

 User scenario 1 
User Scenario 1: 

Peter 
Driver out of the loop, manoeuvre becomes necessary Rural Road 

On a rural road, a driver is reading in full automation when a large vehicle makes an 

evasive manoeuvre necessary. 
TeamMate Car Functionality and Added Value 

(1) Situation understanding; (2) Anticipation of unsafe system predictions; (3) Decision 
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that support from driver is needed; (4) “Explaining” situation to driver; (5) Generating 
optional interventions; (6) Detecting driver state; (7) Check driver decision for overtaking; 

(8) Planning and monitoring of overtaking manoeuvre 

 

 User scenario 2: 
User Scenario 2: 

Martha 
Take-over of automation after driver 

distraction 
Motorway 

While driving manually, a driver suddenly receives a distracting message and the system 

takes over. 

TeamMate Car Functionality and Added Value 

(1) Driver monitoring with attention detection; (2) Driver recognition (distracted driver); 
(3) Anticipation of unsafe predictions due to distraction; (4) Decision that driver needs 

help; (5) Communication about situation to driver; (6) Adaptive communication and hand-
over strategy; (7) Hand-over from manual driving to fully automated; (8) Escalating 

hand-over strategy with driver monitoring. 

 

 User scenario 3:  
User Scenario 3: 

Eva 

Learning to efficiently manage a 

roundabout 

City Traffic 

A TeamMate Car is driving through a complex roundabout with different traffic and driving 

status conditions (i.e. risky driving situation (i.e. hidden pedestrian crossing), high/low 
driver workload).  

By driving through a complex roundabout several times, the system learns from the driver 
how to deal with it efficiently and how to manage hand-over situation between human and 
automated system efficiently. 

TeamMate Car Functionality and Added Value 

(1) Driver monitoring; (2) Situation recognition; (3) Manoeuvre planning under 
uncertainty; (4) Safety assessment & decision that help from driver is needed; (5) 
Communicate situation to driver; (6) Handover from automated to manual driving; (7) 

Solution recording; (8) Deduction of general solution; (9) Learning of new solution 

 

3.1  User scenario 1 (Peter)  

The ULM demo car will be used to implement, verify and validate the user 

scenario 1. A part of the verification and validation will be conducted in the 

ULM driving simulator. It is a static driving simulator which runs the SILAB 
driving simulation software. This software makes the simulation of any 

degree of driving automation, needed to conduct verification studies, 
possible. Each automation feature (e.g. ACC, lateral control etc.) can be 

turned off if needed. The sensors can also be simulated in accordance with 
experimental needs. Different driving variables can be recorded while driving 

in the simulator. These include lateral and longitudinal control, the 
interaction with the simulator, environmental and traffic parameters. The 

driver can interact with the car via the standard in vehicle instruments 
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(steering wheel, indicators and pedals) or via a touch screen, which is 
integrated in the central stack of the vehicle mock-up.  

3.1.1 Sensors and communication platform of ULM demo car  

The road structure of the test-route is stored into a pre-recorded digital map 

using UTM coordinates. To extract relevant data from this map, the cars 
position must be localised.  Free-space is located in between the boundary 

lines of the current lane. 
 

Stopping due to dynamic obstacles is performed by closing the boundary 

lines to restrict the free-space. For a more detailed description see (Kunz & 
al, 2015).   

 
Environment representation: 

- Pre-recorded data: 
 Reference line as input for trajectory planning, e.g. center of lane 

(polygonal line, UTM coordinates). 
 Speed limits assigned to each lane 

 Static stop points, for example stop signs (stop must be performed!). 
 

- Online calculated data 
 Boundary lines (2 polygonal lines, UTM coordinates). 

 Volatile stop points (due to static obstacles on the road) 
 Current position and predicted trajectories of other vehicles and 

pedestrians (spatial data: UTM coordinates and object dynamics, e.g., 

velocity and acceleration) 
 State of traffic lights 

 
In Addition, the sensor setup of the demonstrator is shown in the figure 

below. This consists of two long-range radars, as well as cameras for the 
view near front and rear, as well as an additional stereo-camera, a laser-

scanner and four short-range radars. 
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3.2 User Scenario 2 (Martha) 

VED will use both its car and its simulator to implement, integrate and 
validate the user scenario Martha. VED already provides a demonstrator 

vehicle that is capable of autonomous driving in urban area; however, the 
Martha scenario requires a high-speed vehicle capable to deal with highway 

situations. We are actually equipping a new vehicle to implement our 
algorithms and the algorithms of the project. 

 

3.2.1 Sensors and communication platform of VED demo car  

The VED Automate sensor platform is composed of the following sensors: 

 Monocular cameras 
 5 Lidars + a fusion system 

 1 Long Range Radar 
 1 Global Navigation Satellite System (GNSS)  

 1 Inertial Measurement Unit (IMU)  
 1 multi-bandwidth communication platform (wifi, 4G, internet, 

802.11p) 
 

The following table summarizes the situation of the most important sensors 
for the actual VEDECOM test-car, which are in accordance with the project: 
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Function 
Tech-
nology 

Supplier / 
Model 

Op. Freq. / 
Wavel. 

Range  
Hor. field 
of view 

Update 
rate 

Interface 

Front 
objects 

Radar 
Continenta
l ARS 408 

77 GHz 200 m 17° 16 Hz CAN 

Surroundin
g objects 

5 Lidars IbeoLux  100 m 360° 25 Hz 
Ethernet 
TCP/IP 

Vehicle 
Position 

GNSS 
IXEA + 
Septentrio 

L1/L2  25 Hz RS232+PPS 

Vehicle 
Position – 
lateral (lane 
marking) 

Camera VEDECOM // 60m 60° 25 Hz Ethernet 

 

In addition to the sensors we have several algorithms running:  
 Obstacle detection tracking and fusion: In this part each surrounding 

obstacle is detected and tracked over time and its state vector is 
returned at each step of computation. 

 Lane marking detection: based on a monocular camera, we have 
developed a robust algorithm of lane marking which detect the lines 

and their typology (dashed, continuous  ...etc.) 

 Path following and control algorithms: our car is able to follow a path, 
this path can be either computed from the results of the perception 

step or replay a recorded path coming from the IMU/GPS or a SLAM 
algorithm (in urban areas.). 

 
To deal with high vehicle speed a new demo car is under construction for 

Automate. The equipment will have the same environmental sensing 
capabilities. The Vedecom Demo Car has actually a V2X interface based on a 

multiband architecture (802.11p, 3G, 4G, Internet). This interface is 
compatible with the latest ETSI norms. In addition to that, a network 

between the different systems, ECU’s and computers ensures the 
communication inside the car. Tests will be performed to check the 

operability between proposed sensors and the existing platform. The current 
sensor platform will be then enhanced with operable sensors and 

communication layer 

The Vedecom sensor platform will also include a driver’s state sensor 
required for detecting the driver’s distraction. 

3.3 User Scenario 3 (Eva)  

The CRF and REL will use a driving simulator to implement, verify and 

validate the user scenario 3. Three main reasons for that: 
 Possibility to consider also high-critical situations and scenarios – such 

as roundabout in urban scenarios – without safety concerns. 
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 Experiments involving real users, with the advantage to explore 
several HMI solutions, as well as to investigate acceptability and 

usability issues (in a more flexible and effective way). 
 Possibility to focus the attention on the interaction between human-

agent and machine-agent, thus on the decision aspects, not affecting 
by perception problems. 

 
In addition, a test-vehicle (from AdaptIVe EU project) is available to collect 

data from real-worlds and to test single and specific modules/components 

(e.g. driver monitoring system from CAF, on-line risk assessment module, 
driver model, and so on). It is not foreseen to experiment the Eva scenario 

with this vehicle. Main reasons are related with HMI integration issues and 
the fact that we cannot test this vehicle in real-roads and to make exhaustive 

tests on a dedicated test-track is not fully representative. Besides on the 
driving simulator we are free to investigate also high critical situations (fully 

exploiting the potential benefit of the team-mate car) not possible with a 
real-vehicle. 

 
In the next paragraphs, we will focus on the sensorial system available on 

the test-vehicle, which is built on the basis of a Jeep Renegade, with 
robotised gearbox. This is because this model already offers some 

components and functions that are useful for the automatic system 
developed in the project. Following the approach of the layered architecture, 

the automatic system uses as much as possible of production vehicle 

components, adding redundancies, extra information sources and driver 
interaction channels to what is already available in production. 

3.3.1 Sensors and communication platform of the CRF test-car  

The following table shows the situation for the CRF test-car (Bisoffi et al., 

2015): 
 

Function 
Tech-
nology 

Supplier 
/ Model 

Op. Freq. / 
Wavel. 

Range  
Hor. field 
of view 

Update 
rate 

Interface 

Front 
objects and 
Lane 

Radar + 
Camera 

Delphi 
RACam 1.0 

77 GHz 100 m 100° 20 Hz 
Ethernet 
UDP 

Front 
objects 

Lidar 
Valeo 
ScaLa 

905 nm 150 m 145° 25 Hz 
Ethernet 
TCP/IP 

Vehicle 
Position 

GNSS 
NovAtel 
Flex6 

L1/L2  20 Hz RS232+PPS 

Side/rear 
objects 

Radar 
Autoliv 
SR radar 

24 GHz 14 m 100° 20 Hz CAN 

Side/rear 
objects 

Ultrasound 
Series 
production 

ultrasound 5 m 60° 100 Hz CAN 
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It is worth to noting here that the “range” parameter is referred to the target 
constituted by a car. 

 
For what concerning the actuators used to control vehicle motion in 

automatic mode (that is brake, steering, and the engine), they are the same 
as available on the production car model, but with specific SW update in the 

control ECUs, in order to be able to accept possible control requests from the 
autonomous system. 

 

To conclude, a final remark: what is described before is true for the test-
vehicle, not necessarily for the driving simulator, where the scenario is 

specifically built and thus ADAS sensors are “simulated” as well. 

4 Conclusion 

In cycle1, we have defined the demonstrator sensor platforms according to 
the scenarios requirements. These are either new demonstrators or existing 

demonstrators, which will be updated with the additional required sensors. 

This concerns mainly the driver’s state sensor and the V2V, V2X sensors.  
 

Regarding the driver modelling we have produced lists of goals and operators 
that can now be used to model driver-vehicle-interactions. We defined and 

implemented a template probabilistic driver model for intention recognition 
and behaviour assessment, whose fine-level structure and parameter can be 

learned from time-series of human driving data.  
 

The work on situation modelling focused on the semantic enrichment of the 
situation model and the prediction of the situation evolution. The semantic 

enrichment of the situation model based on the data provided by the 
perception layer was implemented using an ontology and logical rules. First 

vehicle models based on the CYRA motion model have been implemented 
and can be used for the prediction of the temporal and spatial evolution of 

the traffic scenes required by online risk assessment. 

 
In this first cycle a study for learning, verification and validation of the 

driver’s intention recognition and driver’s situation awareness has been 
performed. It includes 48 subjects driving the Peter scenario on two driving 

simulators equipped with an eye-tracking system. Although focussing on the 
Peter scenario for the moment, the resulting model is then planned to be 

adapted to provide behaviour assessment in the Martha and Eva scenarios. 
Potential required collection of additional experimental data for this 

adaptation will be discussed with the related teams. 
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In the next cycle, we will start with integrating the sensors in the 
demonstrator platforms and further verification and validation test will then 

be performed at system level. The driver’s state sensor hardware will be 
finalized and improved models will be integrated.  

 
We will model the driver behaviour and driver interaction with an automation 

based on the empirical data, and use this knowledge to make suggestions 
regarding the design of the TeamMate car. Based on the experimental data 

obtained in the first cycle, the probabilistic driver models for intention 

recognition and behaviour assessment will be trained and validated. 
Furthermore, the semantic enriched situation model will be extended with an 

interface to provide inputs to the module for predicting the situation 
evolution, and the vehicle models will be extended to incorporate knowledge 

about the future course of the road and potential future manoeuvres. 
 

Verification and Validation of the situation model and driver’s model will be 
done in the different demonstrator vehicles with the related scenarios. 

Experiments with the Martha scenario are planned to test both models 
including driver’s state sensor. The experiments will be performed with the 

VED vehicle first in a high speed track with an emulation of real situations 
and on an open road (the A86 highway) under constraint of having the legal 

authorizations from the local authorities. The next cycle experiments for the 
Eva and Peter scenarios are planned and still under discussion with the 

related teams. 
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