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1 Introduction 

The activities in the Automate project have been organized in 3 cycles to 

guarantee that the maturity of the technologies developed in the project is 

iteratively increased while assessing that the progresses are consistent with 

the needs of the demonstrators and, in turn, with the overall concept and 

objectives of the project. 

As shown in Figure 1, the first 2 cycles are focused on the development and 

technical validation of the components (i.e. the enablers) performed in WP2, 

WP3 and WP4. The experience acquired in the 1st cycle (lesson learnt) has 

been used at the beginning of the 2nd cycle to review the requirements and 

metrics for the design and development of the enablers and, as a consequence, 

to improve them. 

At the end of the 2nd cycle, the enablers are planned to be integrated into the 

demonstrators in WP5, and the performances of the 1st version of the 

demonstrators are evaluated against their baseline in WP6. 

In the 3rd cycle, WP2, WP3 and WP4 are fed with the results of this evaluation 

process to deliver the final version of the enablers. The 3rd cycle ends with the 

evaluation of the final version of the demonstrators. 

This deliverable describes the current state of the enablers developed in WP3 

in the first half of the 2nd cycle, as well as the experiments conducted and 

proposed to technically validate them according to the validation plan and the 

requirements and metrics defined in D3.4. 

 



 

Figure 1: Project cycles, milestones and link between enablers (WP2, WP3 and WP4) and demonstrators (WP5 and 

WP6) 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

<22/12/2017> 
Named Distribution Only 
Proj. No: 690705 

Page 8 of 96 

 

The development of all enablers follows the same process for WP2, WP3 and 

WP4. Therefore, the deliverable D2.4, D3.5 and D4.4 that describe the status 

of the development and validation of the enablers have been structured with 

the same chapters to reflect the common (parallel) process followed in WP2, 

WP3 and WP4 to deliver all enablers in time to be integrated into the 

demonstrators. 

The document is structured as follows. After the introduction the general 

approach of the project regarding WP2 is described in Chapter 2. Then, the 

status of the enablers is presented in Chapter 3 including the improvements 

and latest developments of them. Next, Chapter 4 describes the validation of 

enablers along with validation methodologies and the results. Finally, Chapter 

5 concludes the document. 
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2 How the WP2 enablers contribute to the implementation  

The top-level objective of AutoMate is to develop, evaluate and demonstrate 

the “TeamMate Car” concept as a major enabler of highly automated vehicles. 

This concept consists of considering the driver and the automation as members 

of one team that understand and support each other in pursuing cooperatively 

the goal of driving safely, efficiently and comfortably from A to B. 

As a consequence, in order to show how the enablers contribute to the 

implementation of this concept, it is important to briefly explain why the 

cooperation is needed, and how the human and the automation can support 

each other to create a safe, efficient and comfortable driving experience.  

As shown in Figure 2, both the human and the automation have limits that 

can negatively affect the safety as well as the efficiency, the comfort, the trust 

and the acceptance of the autonomous driving. 

For the human, the limits are often related to their driving performance: they 

are likely to affect the safety, and cause accidents. For the automation, the 

limits, mostly at perception and decision level, may affect the efficiency and 

the comfort of the trip, and then, in turn, the acceptance of the automation. 

The AutoMate approach is based on the mutual complementarity between the 

driver and the automation: this support is achieved through the cooperation, 

between the team members.  
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Figure 2: Schematic representation of the overall concept of the project. 

 

While the Automation to Human Cooperation (A2H) is used to complement the 

human limits, the Human to Automation Cooperation (H2A) is implemented to 

allow the driver to support the automation to overcome its limits.  

The complementarity between the driver and the automation is the conceptual 

solution to compensate the reciprocal limitations, while the cooperation is how 

the complementarity is implemented. Figure 3 shows how both the A2H and 

the H2A cooperation can be implemented in perception (state A and B) and in 

action (state C and D). 
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Figure 3: State machine that shows how the cooperation is implemented 

 

The scenarios and use cases selected to demonstrate the relevance of each 

enabler are therefore representative and consistent with the direction of 

cooperation implemented by that enabler, as well as the modality of support 

(i.e. either in action or perception). Since the cooperation is implemented 

through the enablers developed in the project, Table 1 shows the role and 

relevance of each enabler in the cooperation. 
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Table 1: Role and relevance of the WP2 enablers for the cooperation 

WP ID Enabler 
Enabler 

Owner 
Aim of the enabler 

Direction of the support 

Automation to Human 
Human to 

Automation 

WP2 

Enabler 1: Sensor and communication platform 

E1.1 

Driver 

monitoring 
system with 
driver state 

model for 
distraction and 

drowsiness 

CAF 

Sensors and models 
for driver’s visual 
distraction and 

drowsiness detection 
and classification 

Enabler E1.1 is needed to 
implement a support in 
perception to complement the 

perception of the driver about 
the his/her state 

 

E1.2 
V2X 

communication 
BIT 

Allow the 
communication 

between the vehicle 
and everything. 

Enabler E1.2 is needed to 

implement a support in 
perception to complement the 
perception of the driver about 

the environment 

 

Enabler 2: Probabilistic Driver Modelling and Learning 

E2.1 
Driver intention 
recognition 

OFF 

Classify the current 

driver state, describe 
the interdependencies 

between the driver’s 
state, type, behaviour 
and environment and 

predict the driver 
intention 

Enabler E2.1 is needed to 
implement a support in 

perception to complement the 
perception of the driver about 
his/her state 

 

 

Enabler 3: Probabilistic Vehicle and Situation Modelling 
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E3.1 
Situation and 

vehicle model 

DLR 

OFF 

Estimate the dynamic 

vehicle and object 
state and position 

Enabler E3.1 is needed to 
implement a support in 

perception to complement the 
perception of the driver about 

the situation and the vehicle  

 

E3.2 
Driving task 
Model 

DLR 

Define the driver’s 

tasks to understand 
the expected 

behaviour  
(Paper Enabler) 

Enabler E3.2 is needed to 
implement a support in action 

along with E6.1 (Interaction 
Strategy) to provide the driver 

with an effective means to 
interact with the automation in 
case of need. 

Enabler E3.2 is 

needed to implement 
a support in action 
along with E6.1 

(Interaction 
Strategy) to provide 

the driver with an 
effective means to 
answer and give 

feedback to the 
automation.  
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3 Status of WP2 enablers in cycle 2 

This section describes the detailed progress done during the 2nd cycle of the 

project. Modified assumptions and new approaches based on the knowledge 

acquired from the 1st cycle are written along with the improvements and 

current state of the developments. Furthermore, the testing methodologies 

are presented as well that served to validate the enablers. Finally, future plans 

and works for the 3rd cycle are highlighted. 

  



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<22/12/2017> 
Named Distribution Only 

Proj. No: 690705 

Page 15 of 96 

 

3.1 E1.1 – Driver monitoring system with driver state model for 

distraction and drowsiness 

3.1.1 Scenario and uses case where E1.1 is relevant 

As shown in Table 1, Enabler E1.1 is needed to implement a support in 

perception from the automation to the human (A2H) to complement the 

perception of the driver about his/her state. 

One of the use cases of MARTHA scenario has been revised to highlight and 

clarify the role of E1.1 to implement this cooperation. 

 

Martha is driving in an extra-urban road in Manual Mode. She receives an 

incoming call: the car detects that she is distracted and this could lead to an 

unsafe behaviour. The TeamMate car offers a cooperation in action, suggesting 

a handover in order to shift to Automatic Mode. Martha accepts the suggestion 

and cedes the control. 

3.1.2 Implementation 

3.1.2.1 Driver monitoring system hardware 

The driver monitoring system includes the following main parts (details are 

described in another project document [2] of task 2.2): 

 one camera which operates in the Near Infrared spectral range placed 

on top of the steering wheel column observing the driver’s face through 

the steering wheel; 

                                    

2 Driver Monitoring Sensor, AutoMate_WP2_Driver_State_Sensor_01.pdf 
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 a set of Near Infrared LEDs synchronized with the camera shutter which 

illuminate the driver’s face; 

 a LED controller box which provides the required power to the LEDs; 

 a PC connected to the camera which runs the Driver Monitoring 

applications including a User Graphic Interface. 

 

Figure 4: Camera integration and field of view 

 

 

Figure 5: Display of the driver monitoring system 
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Within cycle 3 the driver state sensor hardware will be improved with a better 

performing camera and light units. The new HW includes an HDR, NIR 1.2 Mpx 

camera running at 30 fps and a set of distant 940nm NIR lights avoiding the 

bright spot on the glasses. 

3.1.2.2 Drowsiness 

Drowsiness is characterized by many physiological symptoms: increase of the 

blink duration, yawning, head leaning forward, reduced eyelid opening, and 

eye gaze staring etc. The development started in the 1st cycle focused on 

improving the eyelid/eye opening based model by using head specific 

movement. 

The analysis of the head movements is used to reinforce the eye/eyelid 

drowsiness model when this one is available. It also provides a drowsiness 

model by its own when the eye/eyelid drowsiness model is not available. Such 

situation may occur when the driver wear sun glasses, when the reflections of 

the NIR lights occlude a too important part of the eyes, heavy make up on the 

eyes, out of range head inclination etc. 

The development initially focused on head gaze staring considering the 

assumption that a drowsy driver performs less head movements than when he 

is alert. A fixation duration was defined on the basis of the drowsiness 

database. The duration was set to 10 seconds during which the driver head 

rotations do not exceed 2°. So we expect that the frequency of head fixations 

would increases with drowsiness. 

The graphs in the figure below show on top the drowsiness level on the KSS 

scale as labelled by an expert, the bars on graph in the middle indicate a head 

fixation, the bottom graph shows the number of fixation per period of 5 
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minutes. One can note that only very high level of drowsiness are correlated 

with an increase number of head fixation. 

 

Figure 6 : Head fixations vs drowsiness 

The tests performed on a simulator database have confirmed some correlation 

for the highest drowsiness level. Still the validity of this result has to be 

confirmed in real driving conditions where the driving conditions, the traffic, 

the presence of a passenger etc. may change significantly the head movement 

behaviour compared to the monotonous simulator driving scenarios. 

The main working line is then to exploit the changes of the characteristics of 

the head movement when the driver becomes drowsy. This approach is based 

on a state of the art on psychophysiology studies which demonstrate that 

drowsiness is characterized by a loss of the muscular tonicity. One of the 

consequence is that driver react by changing their posture and repositioning 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<22/12/2017> 
Named Distribution Only 

Proj. No: 690705 

Page 19 of 96 

 

head movements. J-C. Popieul, P. Simon and P. Loslever [3] also note a 

reduction of the head movement speed.  

D. Lee, S. Oh, S. Heo, M. Hahn [4] propose a drowsiness model based on head 

leaning and head proximity to the head rest. Jürgen Schmidt [5] uses 

intentional head movements defined as wide and fast movements to detect 

alert state. 

Considering these effects the 2nd cycle work is focusing on exploring intended 

head movements to detect alert phases and exploring the variation of the 

movement characteristics to detect drowsy phases. 

The work includes various steps: 

 Labelling of head movements; 

 Development of an algorithm which detects head movements, 

measurement of the head movement characteristics and classification; 

 Development of a head based drowsiness model. 

 

The head movements were classified into the 10 classes shown in Table 2. 

                                    

3 J-C. Popieul, P. Simon, P. Loslever, “Using driver’s head movements evolution as a 

drowsiness indicator”, Intelligent vehicles symposium – Proceedings IEEE, (2003), France  

4 D. Lee, S. Oh, S. Heo, M. Hahn, “Drowsy driving detection based on the driver’s head 

movement using infrared sensors”, Second international symposium on universal 

communication – IEEE, (2008), South Korea 

5 J. Schmidt, Christian Braunagel, Wolfgang Stolzmann, and Katja Karrer-Gauß, “Driver 

Drowsiness and Behavior Detection in Prolonged Conditionally Automated Drive”, 2016 IEEE 

Intelligent Vehicles Symposium (IV) Gothenburg, Sweden, June 19-22, 2016 
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Table 2: Head movement classes 

No. 
Movement definition 

1 Movement to look at the rear-view mirror exterior left 

2 Movement to look at the rear-view mirror interior (central) 

3 Movement to look at the rear-view mirror exterior right 

4 Movement to reposition the head 

5 Movement while the driver is touching the face 

6 Movement to look at the window 

7 Movement to look at the radio/central screen 

8 Movement to look something unknown 

9 Movement of head but keep looking the road 

10 Movement of head while the driver is talking 

 

For each movement the following characteristics are computed: amplitude, 

duration, duration of the rise (toward the area the driver wants to observe), 

duration of the descent (back to the default position), duration of the plateau 

and speeds. The plot shown in Figure 7 highlights the yaw of typical head 

movement of a driver looking at the central mirror, fixes the mirror then goes 

back to the on road position. 
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Figure 7: Yaw of head movement when the driver looking at the central mirror, 

fixes the mirror then goes back to the on road position 

Figure 8 shows the same action but the driver fixes the gaze to the central 

display before going back to the on road position. This behaviour illustrate the 

difficulty to extract robust measures. 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<22/12/2017> 
Named Distribution Only 

Proj. No: 690705 

Page 22 of 96 

 

 

Figure 8: Yaw of head movement when the driver looking at the central mirror, 

fixes the mirror then fixes the gaze to the central display before going back to the 

on road position 

A drowsiness model was developed based on the occurrence of repositioning 

movements combined with a diminution of the movement speed. We have to 

deal with two major issues: 

 The first one is related to the accuracy of the measurement of the head 

movement characteristics.  

 The second one is related to the monotonous driving conditions in 

highway with very few traffic. Indeed, in such conditions, driver’s head 
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rotation are very seldom. It is then difficult to filter out noisy measure 

from the individual variability. 

The ongoing work on drowsiness model focuses on the development of a 

drowsiness model based on head movement characteristics along with the 

improvement of the eye/eyelid based diagnostic. Other features like yawning 

and face rub will also be exploited. 

3.1.2.3 Visual attention/distraction 

The visual attention/distraction work focused mainly on improving the 

accuracy and quality of the eye gaze and head gaze signals. Indeed the 

performance of distraction model is directly related with the accuracy and the 

robustness of the eye gaze and head gaze output of the face tracker. 

The work lines are then twofold:  

 Improved face tracker algorithm. An updated version of the current face 

tracker has been integrated. The rotation range are significantly 

improved to almost +/-90° in Yaw, +/- 45° in roll, >25° upward pitch 

and >50° downward. 

The new face tracker is now robust to driver wearing masks or hand on 

mouth. 

 Improved driver’s state HW as mentioned before. 
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3.2 E1.2 – V2x communication 

3.2.1 Scenario and uses case where E1.2 is relevant 

V2x is essential part of future ITS systems. It directly improves the security of 

transportation, and it can improve the traffic flow and transport efficiency. 

 

In AutoMate project, there are two scenarios in which V2x has a crucial role, 

even if in these scenarios the utilization of V2x differs.  

 

In the MARTHA scenario V2I acts as an additional sensor, meaning that the 

TeamMate car is able to receive information about the environment (i.e. road 

works ahead), which would not be available in time for a safe cooperation. This 

is based on the simple information sharing concept of V2x. 

 

On the other hand, in the EVA scenario, the cooperation concept of V2V is 

highlighted, namely Eva and the TeamMate car do not just receive information 

about the roundabout related traffic situation, but they can also affect other 

cars’ behaviour by automatically negotiate their entrance in the roundabout 

with the other vehicles. Practically, this means that the TeamMate car’s 

embedded intelligence is able to conclude from periodic V2V message 

exchanges, if there is another vehicle, which would like to allow into the 

roundabout or there is enough space to drive in safely. This allows to solve the 

traffic situation cooperatively with other vehicles, i.e. when and how the 

TeamMate car can enter in the roundabout. 

 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<22/12/2017> 
Named Distribution Only 

Proj. No: 690705 

Page 25 of 96 

 

Therefore, as shown in Table 1, Enabler E1.2 is needed to implement a support 

in perception from the automation to the human (A2H) to complement the 

perception of the driver about the environment. 

Two use cases of MARTHA and EVA scenario have been revised to highlight 

and clarify the role of E1.2 to implement this cooperation. 

 

Martha is driving in an extra-urban road in Manual Mode. She receives an 

incoming call: the car detects that she is distracted, and this could lead to an 

unsafe behaviour. The TeamMate car offers a cooperation in action, suggesting 

a handover in order to shift to Automatic Mode. Martha accepts the suggestion 

and cedes the control. 

 

Eva is driving in an urban road in Manual Mode. When she arrives in a 

roundabout, she is not able to decide the right moment to get into it. Without 

a support, Eva would wait several minutes before performing the manoeuvre. 

Through the V2V communication, the vehicle negotiates the entrance into the 

roundabout with the other cars and suggests to Eva the right moment to 

perform the manoeuvre. Eva enters the roundabout still in Manual Mode. 

 

3.2.2 Implementation 

In the 2nd cycle we identified the specific V2x messages, which have been used 

in the scenarios:  

 Road Works Warning (RWW) message is a type of Decentralized 

Environmental Message (DENM) that describes how to drive through or 

bypass the road work area; DENM is sent by the infrastructure to 

vehicles; RWW message is used in the Martha scenario; 
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 similarly to RWW, DENM is able to carry information about traffic 

condition, i.e. about traffic density; this information could be used in the 

Eva scenario; 

 Cooperative Awareness Message (CAM) provides by means of periodic 

sending of status data (basic status, position, current speed etc.) a 

cooperative awareness to surrounding vehicles, therefore it is sent by 

vehicles to vehicles; CAM message is used in the Eva scenario. 

We use Cohda MK5 [6] devices of a third party supplier as V2x communication 

capable units. These devices have customized embedded Linux operating 

system to support the special needs of the V2x communication hardware. 

Furthermore, application is provided to transmit or receive CAM and some kind 

of DENM messages. 

In this cycle, we customized and configured the mentioned application to 

transmit the proper RWW message (there was no need to change CAM). Then, 

we developed test scripts to be able to verify the capability of the Cohda 

devices and get initial test results on their performance.  

In addition, we started to implement a gateway application, which is able to 

aggregate and distribute V2x message on socket basis in the local network 

(e.g. LAN, Wi-Fi) for other applications. The benefit of such gateway 

application is that it makes the lower layers of V2x communication transparent 

for other applications. In addition, it allows to handle custom V2x messages in 

a more simple way. 

                                    

6 Cohda Wireless MK5 OBU, http://www.cohdawireless.com/solutions/hardware/mk5-obu/ 
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3.3 E2.1 – Driver Intention Recognition 

3.3.1 Scenario and uses case where E2.1 is relevant 

As shown in Table 1, Enabler E2.1 is needed to implement a support in 

perception from the automation to the human (A2H) to complement the 

perception of the driver about his/her intention. 

One of the use cases of PETER scenario has been revised to highlight and 

clarify the role of E2.1 to implement this cooperation. 

 

Peter is driving in a narrow rural road in Manual Mode. He approaches a tractor 

that causes limited visibility or the road. The TeamMate car detects a car 

approaching from the opposite lane. Since Peter is not aware of the car, he 

decides to overtake, and the TeamMate car detects his intention. In order to 

avoid an imminent collision, the TeamMate car informs Peter about the 

approaching vehicle and warns him about the risky manoeuvre. Peter suddenly 

becomes aware of the risk, and he does not perform the overtaking until it is 

safe. 

 

Moreover, E2.1 has also been used to implement a strategy to trigger the 

decisions of the automation. In particular, when the TeamMate car has to 

overtake the tractor in Automated Mode in PETER scenario, a trigger is 

necessary to identify the right moment for the automation to start the 

manoeuvre. Therefore, E2.1 is used in this case to identify the conditions for 

the automation to overtake by learning from the behaviour that the driver had 

in Manual Mode. In this case the E2.1 is not an enabler of the cooperation, but 

it is an enabler of the automation strategy (without E2.1, the TeamMate car 
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would never overtake the tractor, creating frustration to the driver and thus 

reducing the acceptance of the automation). 

 

3.3.2 Concept 

Driver intention recognition most commonly addresses the problem of 

anticipating driving manoeuvres a driver is likely to perform in the next few 

seconds. As early knowledge about such manoeuvre intentions may serve as 

a potential enabler to generate adaptive warnings and early interventions 

before a potential dangerous manoeuvre is initiated, driver intention 

recognition is of ever increasing importance for the development of advanced 

driver assistance systems and has become a popular research topic in recent 

years.  

Approaches reported in the literature (some comparative reviews are provided 

e.g., by Doshi and Trivedi [7] and Lefèvre et al. [8]) mainly differ in respect to 

the selected scenarios and addressed manoeuvres, modelling techniques used, 

and the sensor input considered.  

 

On a conceptual level, we will roughly distinguish between two potential 

different sources of information for driver intention recognition: causes and 

effects. Here, causes should be understood as information perceived by the 

                                    

7 Doshi, A. and M. M. Trivedi (2011), “Tactical Driver Behavior Prediction and Intent Inference: 

A Review”, in Proceedings of the 14th International IEEE Conference on Intelligent 

Transportation Systems, pp. 1892-1897. 

8 Lefèvre, S., D. Vasquez, and Ch. Laugier (2014), “A Survey on Motion Prediction and Risk 

Assessment for Intelligent Vehicles”, in Robomech Journal, 1, 1, pp. 1-14. 
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driver that results in the formation of an intention, e.g., a slow driving lead 

vehicle in the case of overtaking intentions. In contrast, effects should be 

understood as the observable effects on the overall behaviour of the driver 

and vehicle, resulting from the existence of an intention, e.g., to stay with the 

example of overtaking behaviour, a head movement to check the blind spot or 

the initiation of an overtaking manoeuvre. 

 

Traditionally, driver intention recognition focusses on modelling the relations 

between manoeuvre intentions and their effects on the overall behaviour of 

the vehicle and driver. As such, considered input for driver intention 

recognition is usually limited to information about the vehicle state and the 

driver, to be provided by internal and external sensor systems of the vehicle.  

 

Here, information about the vehicle state should be understood as subsuming 

information about the vehicle dynamics, such as velocity and acceleration, 

steering wheel angle and yaw rate, pedal positions etc., usually readily 

available via the Controller Area Network (CAN) bus of the vehicle, as well as 

information about the lateral position and alignment of the vehicle in the road, 

and the current speed limit, provided e.g., by camera systems or derived from 

GPS and digital maps. Most commonly, driver intention recognition based on 

information about the vehicle state is realized by comparing the observable 

vehicle state sequence with expected sequences for each addressed 

manoeuvre intention (c.f., Section 3.4.2.2).  

A severe limitation of such approaches in respect to an early recognition of 

driver intentions, however, results from the fact that a manoeuvre needs to 

be already initialized to be recognized. However, as aptly stated by Ohn-Bar 
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et al. (p. 720) [9] “the intent to perform the manoeuvre existed before the 

trajectory of the vehicle was altered and can be observed earlier”.  

To overcome these limitations and extend the predictive capabilities for driver 

intention recognition, many authors emphasize the value and resulting need 

of additional driver-based information, to be understood as subsuming 

information like head, eye, foot, and hand positions and movements, usually 

obtained via driver monitoring systems. Such driver-based input provides 

valuable information due to the way that drivers prepare for manoeuvres, e.g., 

via head movements to check the blind-spot. Unfortunately, although the 

value of driver-based input for intention recognition must not be undervalued, 

their inclusion only shifts the recognition of manoeuvre intentions to earlier 

stages of execution. 

 

Concerning the causes for intention, potential information is available from the 

situation context itself, e.g., by the means of information about the vehicles 

in the vicinity of the driver. Up to now, potentially due to limited sensor 

capabilities, such information has not been used thoroughly for the purpose of 

driver intention recognition, but it is either neglected entirely or restricted to 

the immediate surrounding of driver, e.g., to the lead vehicle or seldom 

potential vehicle in the blind spots. This is surprising, as information about the 

                                    

9 Ohn-Bar, E., A. Tawari, S. Martin, and M. M. Trivedi (2014), “Predicting Driver Maneuvers 

by Learning Holistic Features”, in Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 

719-724. 
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current traffic situation should be able to provide information suitable to 

actually predict the intentions of the driver prior to their execution.  

 

Furthermore, as addressed in AutoMate, the increasing introduction of 

automation to the vehicle, may result in the effects of intentions to become 

misleading, and, in the case of fully autonomous driving, potentially obsolete. 

Obviously, in the case of autonomous driving, intention recognition for the 

“passenger” is no longer needed for safety reasons. We do, however, believe 

that autonomous systems may gain value a currently unused value from 

knowing whether a driver would have the intention to overtake, if he was in 

control, such as to enable the autonomous system to comply with the usual 

behaviour of the driver and communicate when such compliance cannot be 

achieved. 

3.3.3 Implementation 

The probabilistic driver model for intention recognition and behaviour 

prediction (in the following simply referred to as model) is conceptualized as 

a Dynamic Bayesian Network that models the causal and statistical relations 

between the driver’s intentions, driving manoeuvres resp. behaviours, and the 

situational context, as observable by the TeamMate vehicle’s sensor and 

communication platform.  

In the 2nd cycle of AutoMate, the development of the model focused on the 

Peter scenario, dealing with overtaking scenarios on rural roads.  

The purpose of the model in the Peter scenario is to constantly provide the 

TeamMate vehicle with an online recognition of the current intentions of the 

driver (to be used for the cooperation) and also to collect data to be used by 
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E4.2 (Learning of intention from the driver) to learn when to trigger the 

overtaking in Automated Mode and to perform it in a human-like style. 

 

If the driver is in control of the TeamMate vehicle (manual driving), the 

information provided by the model can be used to assess the safety of the 

intended driving manoeuvre.  

 

If the automation is in control of the TeamMate vehicle (autonomous driving), 

the information provided by the model can serve as a mechanism to learn and 

trigger the most appropriate manoeuvres to the automation. 

 

The problem addressed in the 2nd cycle is the recognition of the current 

manoeuvre intention and actually performed manoeuvre with respect to the 

driving behaviour of the driver, based on the situational context. In the Peter 

scenario, we consider three primary driving behaviours: performing lane 

changes to the left lane (LCL), to the right lane (LCR), and lane-keeping 

behaviour (LK), represented by a discrete variable 𝐵, 𝑉𝑎𝑙(𝐵) = {𝑏𝐿𝐶𝐿 , 𝑏𝐿𝐶𝑅 , 𝑏𝐿𝐾}.  

 

Corresponding to these behaviours, we consider three potential intentions: the 

intention to change to the left lane (i.e., the intention to overtake), to return 

to the right lane (in order to complete an overtaking manoeuvre), and the 

absence of a lane change intention.  

 

For modelling purposes, it is however more convenient to replace such lane 

change intentions with target lane intentions, i.e., whether the driver intends 

to drive on the left or on the right lane, represented by a binary variable 

𝐼, 𝑉𝑎𝑙(𝐼) = {𝑖𝐿 , 𝑖𝑅}. Let, correspondingly, 𝐿, 𝑉𝑎𝑙(𝐿) = {𝑙𝐿 , 𝑙𝑅} denote a binary variable 
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that represents whether the TeamMate vehicle is located in the left or right 

lane. It should be apparent that knowing the current lane, target lane 

intentions can easily be transformed into lane change or overtaking intentions, 

in that a lane change intention is present if the current lane and the target 

lane intentions differ. 

 

For the 2nd cycle, we focus on a model for driver intention recognition that 

refrains from driver-based input and instead tries to focus on information 

provided by the traffic situation as potential causes for the formation of 

intentions. Let 𝑶𝐼 denote a set of discrete and continuous variables 

representing the causes for the formation of intentions and let 𝑶𝐵 denote a set 

of discrete and continuous variables representing the observable effects of 

intentions in terms of driving behavior. 

The model is based on the assumption that the temporal evolution of intentions 

and behaviours can be expressed as two hidden first-order Markov processes. 

More specifically we assume that for any number of time steps 𝑇 ≥ 1, the 

conditional joint distribution 𝑝(𝐼1:𝑇, 𝐵1:𝑇, 𝑶𝐵
1:𝑇|𝐿1:𝑇, 𝑶𝐼

1:𝑇) can be factorized, 

according to the graph structure shown in Figure 9, as: 

𝑝(𝐼1:𝑇 , 𝐵1:𝑇 , 𝑶𝐵
1:𝑇|𝐿1:𝑇, 𝑶𝐼

1:𝑇) = 𝑝(𝐼1:𝑇|𝐿1:𝑇, 𝑶𝐼
1:𝑇)𝑝(𝐵1:𝑇 , 𝑶𝐵

1:𝑇|𝐼1:𝑇 , 𝐿1:𝑇)

= 𝑝(𝐼1|𝐿1, 𝑶𝐼
1)𝑝(𝑶𝐵

1 |𝐵1)𝑝(𝐵1|𝐼1, 𝐿1)∏𝑝(𝐼𝑡|𝐼𝑡−1, 𝐿𝑡 , 𝑶𝐼
𝑡)𝑝(𝑶𝐵

𝑡 |𝐵𝑡)𝑝(𝐵𝑡|𝐵𝑡−1, 𝐼𝑡, 𝐿𝑡)

𝑇

𝑡=2

. 

As such, we assume that the model can be defined in terms of two 

components, a component for intention recognition, realized akin to a 

Maximum-entropy Markov Model, where for any number of time steps 𝑇 the 

(conditional) joint distribution 𝑝(𝐼1:𝑇|𝐿1:𝑇 , 𝑶𝐼
1:𝑇) is defined as 
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𝑝(𝐼1:𝑇|𝐿1:𝑇, 𝑶𝐼
1:𝑇) = 𝑝(𝐼1|𝐿1, 𝑶𝐼

1)∏𝑝(𝐼𝑡|𝐼𝑡−1, 𝐿𝑡, 𝑶𝐼
𝑡)

𝑇

𝑡=2

, 

and a component for behaviour recognition, realized akin to an (input-

dependent) Hidden Markov Model with factorized observation model, where 

for any number of time steps 𝑇 the (conditional) joint probability distribution 

𝑝(𝐵1:𝑇 , 𝑶𝐵
1:𝑇|𝐼1:𝑇 , 𝐿1:𝑇) is defined as 

𝑝(𝐵1:𝑇 , 𝑶𝐵
1:𝑇|𝐼1:𝑇, 𝐿1:𝑇) = 𝑝(𝐵1|𝐼1, 𝐿1)𝑝(𝑶𝐵

1 |𝐵1, 𝐼1, 𝐿1)∏𝑝(𝐵𝑡|𝐵𝑡−1, 𝐼𝑡, 𝐿𝑡)𝑝(𝑶𝐵
𝑡 |𝐵𝑡, 𝐼𝑡, 𝐿𝑡)

𝑇

𝑡=2

. 

These components can be interpreted as follows: we assume that intentions 

evolve based on the situational context encountered. Intentions then manifest 

themselves by the execution of driving manoeuvres whose effects can then be 

observed. 

 

  

(a) (b) 

Figure 9: Conceptional graph structures of the initial BN and the 2TBN of the 

model. Grey nodes are assumed to be observed during inference. 
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During runtime, the model can be used to continuously maintain a joint belief 

state over the current target lane intentions and manoeuvres 

𝑝(𝐼𝑡, 𝐵𝑡|𝑙1:𝑡, 𝒐𝐼
1:𝑡, 𝒐𝐵

1:𝑡) given all available input obtained thus far, via recursive 

Bayesian filtering adapted to the structure of the model: 

𝑝(𝐼𝑡, 𝐵𝑡|𝑙1:𝑡, 𝒐𝐼
1:𝑡, 𝒐𝐵

1:𝑡)

∝ 𝑝(𝒐𝐵
𝑡 |𝐵𝑡, 𝑙𝑡)∑𝑝(𝐵𝑡|𝑏𝑡−1, 𝐼𝑡, 𝑙𝑡)

𝑏∈𝐵

∑𝑝(𝐼𝑡|𝑖𝑡−1, 𝑙𝑡, 𝒐𝐼
1:𝑡)𝑝(𝑖𝑡−1, 𝑏𝑡−1|𝑙1:𝑡−1, 𝒐𝐼

1:𝑡−1, 𝒐𝐵
1:𝑡−1)

𝑖∈𝐼

. 

 

From this joint belief state, separate belief states over intention 

𝑝(𝐼𝑡|𝑙1:𝑡, 𝒐𝐼
1:𝑡, 𝒐𝐵

1:𝑡) and behaviors 𝑝(𝐵𝑡|𝑙1:𝑡, 𝒐𝐼
1:𝑡, 𝒐𝐵

1:𝑡) can easily be derived via 

marginalization. If in autonomous mode, we can simply use the sub-

component for intention recognition to derive 𝑝(𝐼𝑡|𝑙1:𝑡, 𝒐𝐼
1:𝑡). 

 

As provided, the model should be understood as conceptional, in that the 

parameters and finer structure, e.g., which variables constitute 𝑶𝐼 and 𝑶𝐵, 

must be provided based on prior expert knowledge and/or derived from 

multivariate time-series of human behaviour data via the use of machine-

learning methods. 

OFF conducted a data collection study for the Peter scenario in the OFF driving 

simulator (described in details in section 4.3) to gather data for training (and 

validation) of the driver model for intention and behaviour recognition. 

For the input for intention recognition in the 2nd cycle, we focused on a subset 

𝑶𝐼 of the totally available input obtained in the simulator experiment, for which 

we considered a set of 25 variables, as described in Table 3. More specifically, 

we considered up to two vehicles in front and a single vehicle behind the 

TeamMate vehicle, on each the left and right lane (Figure 10). The vehicles 

are assigned to fixed “roles” based on their relative positions to the TeamMate 
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vehicles and each other. To improve the robustness to noise, we excluded the 

BNR vehicle for cases where the TeamMate vehicle is located on the right lane, 

and the BNL and BNR vehicles for cases where the TeamMate vehicle is located 

on the left lane. 

 

 

(a) 

 

(b) 

Figure 10: Assignment of vehicles in the vicinity of the TeamMate vehicle (light)  

 

Table 3: Overview of the observation variables (features) 𝑶𝑰 , currently considered 

for intention recognition. 

Variable Type Description 

𝐸𝑋 Binary Represents, whether there exists a vehicle 𝑋 in the 

traffic situation. 𝑋 ∈ {𝐵𝑁𝐿, 𝐵𝑁𝑅, 𝐴𝑁𝐿, 𝐴𝑁𝑅, 𝐴𝑆𝐿, 𝐴𝑆𝑅}. 

𝑇𝑋 Binary Represents the type (PKW or LKW) of the vehicle 𝑋. 

𝐷𝑋 Continuous Represents the distance between the TeamMate 

vehicle and a vehicle 𝑋 along the course of the road. 

𝑆𝑋 Continuous Represents the speed of a vehicle 𝑋. 
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𝑉 Continuous Represents a hypothetical viewing distance for the 

TeamMate vehicle. 

 

As potential manifestations of a shown manoeuvre execution, for the 2nd cycle, 

we consider 𝑂𝑩 = {𝒀, 𝑳𝑷}, as described in Table 4. 

 

Table 4: Overview of the observation variables (features) 𝑶𝑩 , currently considered 

for behaviour classification. 

Variable Type Description 

𝑌 Continuous Represents the heading angle, resp. yaw angle in 

respect to the course of the road. 

𝐿𝑃 Continuous Represents the lateral deviation from the centreline. 

 

We aim to use machine-learning methods to derive important variables for 

intention recognition and behaviour classification and used discriminative 

learning techniques for deriving the sub-component for intention recognition. 

Basically, we tried to find a subset 𝑶𝑅𝑒𝑙 ∈ 𝑶𝐼 of relevant features that allow for 

optimal intention recognition. We compared three different realizations of the 

CPDs 𝑝(𝐼𝑡|𝐼𝑡−1, 𝑙𝑡, 𝒐𝐼
𝑡) resp. 𝑝(𝐼1|𝑙1, 𝒐𝐼

1), in the following denoted as 𝑀𝐺𝑎𝑢𝑠𝑠, 𝑀𝐺𝑀𝑀, 

and 𝑀𝐿𝑅. For 𝑀𝐺𝑎𝑢𝑠𝑠, 𝑝(𝐼
𝑡|𝐼𝑡−1, 𝑙𝑡, 𝒐𝐼

𝑡) was learned in terms of an embedded 

Bayesian classifier  

𝑝(𝐼𝑡|𝐼𝑡−1, 𝑙𝑡, 𝒐𝐼
𝑡) =

1

𝑍(𝐼𝑡−1, 𝑙𝑡, 𝒐𝐼
𝑡)
𝑝(𝐼𝑡|𝐼𝑡−1, 𝑙𝑡)𝑝(𝒐𝐼

𝑡|𝐼𝑡, 𝑙𝑡), 

with 𝑍(𝐼𝑡−1, 𝑙𝑡, 𝒐𝐼
𝑡) = ∑ 𝑝(𝑖𝑡|𝐼𝑡−1, 𝑙𝑡)𝑝(𝒐𝐼

𝑡|𝑖𝑡, 𝑙𝑡)𝑖∈𝐼  representing a normalization 

constant and 𝑝(𝒐𝐼
𝑡|𝐼𝑡, 𝑙𝑡) factorizing according to an augmented naïve Bayesian 

classifier, with distributions over continuous variables being approximated by 

Gaussian distributions. For 𝑀𝐺𝑀𝑀, 𝑝(𝐼𝑡|𝐼𝑡−1, 𝑙𝑡 , 𝒐𝐼
𝑡) was learned the same as 
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𝑀𝐺𝑎𝑢𝑠𝑠, however, with distributions over continuous variables being 

approximated by mixture of Gaussians (also known as Gaussian Mixture 

Models (GMMs)), potentially better suited to approximate the underlying 

densities. Lastly, for 𝑀𝐿𝑅, 𝑝(𝐼
𝑡|𝐼𝑡−1, 𝑙𝑡, 𝒐𝐼

𝑡) was learned as a logistic regression.  

Based on the intuition that information required for intention and manoeuvre 

recognition is strongly influenced by whether the TeamMate vehicle is located 

on the left or right, we allow for context-specific independence by considering 

two distinct realizations of 𝑝(𝐼𝑡|𝐼𝑡−1, 𝑙𝑡, 𝒐𝐼
𝑡) to be used when travelling on the left 

𝑝(𝐼𝑡|𝐼𝑡−1, 𝐿𝑡 = 𝑙𝐿
𝑡 , 𝒐𝐼

𝑡) or the right lane 𝑝(𝐼𝑡|𝐼𝑡−1, 𝐿𝑡 = 𝑙𝑅
𝑡 , 𝒐𝐼

𝑡) on the road, for each 

𝑀𝐺𝑎𝑢𝑠𝑠, 𝑀𝐺𝑀𝑀, and 𝑀𝐿𝑅. 

 

In contrast, for this cycle, the CPD 𝑝(𝑶𝐵
𝑡 |𝐵𝑡, 𝐿𝑡) was simply decomposed akin to 

a naïve Bayesian classifier 

𝑝(𝑶𝐵
𝑡 |𝐵𝑡, 𝐿𝑡) = 𝑝(𝑌𝑡|𝐵𝑡, 𝐿𝑡)𝑝(𝐿𝑃𝑡|𝐵𝑡, 𝐿𝑡), 

 

with 𝑝(𝑌𝑡|𝐵𝑡, 𝐿𝑡) and 𝑝(𝐿𝑃𝑡|𝐵𝑡, 𝐿𝑡) approximated as GMMs. 

 

We used the training set 𝐷𝑇𝑟𝑎𝑖𝑛 to learn the structure and corresponding 

parameters of the three different realizations 𝑀𝐺𝑎𝑢𝑠𝑠, 𝑀𝐺𝑀𝑀, and 𝑀𝐿𝑅. The 

resulting graph structure for 𝑀𝐺𝑎𝑢𝑠𝑠 is shown in Figure 11, Figure 12 shows the 

resulting graph structure for 𝑀𝐺𝑀𝑀, and Figure 13 shows the resulting graph 

structure for 𝑀𝐿𝑅. . In each case, the left side shows the graph structure 

realizing 𝑝(𝐼𝑡|𝐼𝑡−1, 𝐿𝑡 = 𝑙𝐿
𝑡 , 𝑶𝐼

𝑡), while the right side shows the graph structure 

realizing 𝑝(𝐼𝑡|𝐼𝑡−1, 𝐿𝑡 = 𝑙𝑅
𝑡 , 𝑶𝐼

𝑡), with the paled underlying structure implying the 

considered search space with non-considered variables being omitted. 
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Figure 11: Learned graph-structures of the model 𝑴𝑮𝒂𝒖𝒔𝒔. 
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Figure 12: Learned graph-structures of the model 𝑴𝑮𝑴𝑴.  
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Figure 13: Learned graph-structures of the model 𝑴𝑳𝑹. 
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3.4 E3.1 – Situation and vehicle model 

3.4.1 Scenario and uses case where E3.1 is relevant 

As shown in Table 1, Enabler E3.1 is needed to implement a support in 

perception from the automation to the human (A2H) to complement the 

perception of the driver about the situation and the vehicle. 

The same use case of PETER scenario already described for E2.1 has been 

considered to highlight and clarify the role of E3.1 to implement this 

cooperation. 

 

Peter is driving in a narrow rural road in Manual Mode. He approaches a tractor 

that causes limited visibility or the road. The TeamMate car detects a car 

approaching from the opposite lane. Since Peter is not aware of the car, he 

decides to overtake, and the TeamMate car detects his intention. In order to 

avoid an imminent collision, the TeamMate car informs Peter about the 

approaching vehicle and warns him about the risky manoeuvre. Peter suddenly 

becomes aware of the risk, and he does not perform the overtaking until it is 

safe.  

3.4.2 Implementation 

The situation and vehicle model consists of a centreline of the lane the vehicle 

is currently driving on. Also there are boundary lines of the lane included, to 

specify the available free space. Static obstacles are excluded by these 

boundary lines, so they are implicit considered in the situation model. Other 

traffic participants (in the Peter scenario there are just cars regarded) are 

modelled by the x-y position of their rear axis, their speed, acceleration, 

orientation and of course of their shape.  
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The modelling provides probabilistic information about the state. This 

information can be used to calculate a more intelligent and safe manoeuvring 

behaviour for the vehicle. 

The enabler has been developed by taking into consideration the following 2 

features: 

1. Semantic enrichment of the situation model 

2. Prediction of the future evolution of the traffic scene 

3.4.2.1 Semantic enrichment of the situation model 

The semantic enrichment module extends scene objects provided by the 

perception layer with semantic information. This semantic information 

describes interaction between scene objects. Furthermore, the set of legal 

manoeuvres a vehicle can legally perform is inferred.  

In the 1st project cycle, we proposed to use ontology with logical rules and a 

reasoner to address this task. The concept and first results on simulated data 

was presented in Deliverable 2.2 [10].  

The goal of the 2nd cycle was to integrate the ontology, the logical rules and 

the reasoner into the situation interpretation module. For that purpose, we 

implemented the JNIOWLBridge module to access the OWL ontology and the 

reasoner in a C++ function, since the must suitable OWL API and reasoner 

exist only as Java implementations. The JNIOWLBridge therefore builds a 

bridge between the available Java OWL/reasoner API and our C++ module. 

The JNIOWLBridge module consists of classes for Loading the Java Virtual 

                                    

10 Sensor Platform and Models including V&V results from 1st cycle 
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Machine (see Figure 14) and handling ontology as well as the reasoner (see 

Figure 15, Figure 16 and Figure 17). 

 

 

Figure 14: JVMLoader class declaration 
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Figure 15: OWLOntology class declaration part 1 
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Figure 16: OWLOntology class declaration part 2 
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Figure 17: OWLOntology class declaration part 3 

 

The JNIOWLBridge is linked to our C++ semantic enrichment module as a 

library. The ontology and logical rules used for the semantic enrichment was 

described in D2.2. The ontology contained the taxonomy and semantic 

relations of relevant scenes objects as pedestrian, road, vehicle, traffic light 

and signal. The logical rules described basic traffic rules in urban scenes. The 

semantic enrichment module takes as input the detected scene objects and 

the modelled ontology and executes the following steps: 

1. loading of ontology by name 

2. generation of relations between detected scene objects (which are 

treated as individuals), such as “vehicle x is on lane y” 

3. adding of these individuals and theirs relations to the ontology 
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4. inference of new relations between the individual objects 

5. inference of legally allowed manoeuvres per vehicle 

6. deletion of previously added individuals and relations from the 

ontology 

7. repetition of algorithm starting at step 2 

 

3.4.2.2 Predicting the future evolution of the traffic scene (OFF) 

The purpose of vehicle models is to predict the temporal and spatial evolution 

of the traffic scene, based on the information provided by the sensor and 

communication platform and the situation model, as a necessary input for 

online risk assessment (for more information on online risk assessment, we 

refer to D3.3 “Concepts and algorithms incl. V&V results from 1st cycle” and 

D3.5 “Concepts and algorithms incl. V&V results from 2nd cycle”). 

3.4.2.2.1 Concept 

In the following, we assume that the sensor and communication platform 

provides all necessary information as previously described in D2.2 “Sensor 

Platform and Models including V&V results from 1st cycle” to the situation 

model, where it is augmented by the semantic enrichment. To recapitalize, we 

expect that at each time step 𝑡, the situation model provides: 

 A belief state 𝑝(𝑿𝑇𝑀
𝑡 |𝒐1:𝑡) about the current state of the TeamMate vehicle, 

where 𝑿𝑇𝑀
𝑡 =

{𝑋𝑇𝑀
𝑡 , 𝑌𝑇𝑀

𝑡 ,Θ𝑅
𝑡
𝑇𝑀
,Θ𝐴

𝑡
𝑇𝑀
, 𝐷𝑇𝑀

𝑡 , 𝐿𝑇𝑀
𝑡 , 𝑉𝑇𝑀

𝑡 , 𝐴𝑇𝑀
𝑡 ,𝑊𝑇𝑀

𝑡 , 𝑆𝐿
𝑡
𝑇𝑀
, 𝑆𝑊
𝑡
𝑇𝑀
, A𝐴
𝑡
𝑇𝑀
, A𝐵
𝑡
𝑇𝑀
, A𝑆
𝑡
𝑇𝑀
, 𝐺𝑇𝑀

𝑡 } 

represents the TeamMate vehicle’s state vector (a description is provided 

in Table 5) and 𝒐1:𝑡 represents the history of unspecified raw sensor 

observations from the TeamMates’s sensors.  
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 Let 𝑽 = {𝑣1, … , 𝑣𝑛𝑉} denote a set of objects detected in the vicinity of the 

TeamMate vehicle, a belief state 𝑝(𝑿𝑣
𝑡 |𝒐1:𝑡) about the current state of each 

object 𝑣 ∈ 𝑽, where 𝑿𝑣
𝑡 = {𝑋𝑣

𝑡 , 𝑌𝑣
𝑡 ,Θ𝑣

𝑡
, 𝑉𝑣

𝑡 , 𝐴𝑣
𝑡 ,𝑊𝑣

𝑡 , 𝑆𝐿𝑣
𝑡 , 𝑆𝑊𝑣

𝑡 , 𝐸𝑣
𝑡 , 𝐶𝑣

𝑡 , 𝐿𝑣
𝑡 } (a 

description is provided in Table 6). 

 A map 𝑀 that allows a reasonable reconstruction of the course of the 

road in the vicinity of the TeamMate vehicle. 

 

Table 5: Description of variables for the representation of the TeamMate vehicle 

considered for the second cycle. 

Variable Type Unit Description 

𝑋𝑇𝑀 Continuous [m] X-coordinate of the centre of the TeamMate 

vehicle in a two-dimensional spatial 

coordinate system relative to an origin 

synchronized with the map 𝑀 

𝑌𝑇𝑀 Continuous [m] Y-coordinate of the centre of the TeamMate 

vehicle in a two-dimensional spatial 

coordinate system relative to an origin 

synchronized with the map 𝑀 

ΘR𝑇𝑀 Continuous [rad] Yaw-angle relative to a global x-axis 

synchronized with the map 𝑀 

ΘA𝑇𝑀 Continuous [rad] Yaw-angle relative to the course of the road 

at the TeamMate’s location 

𝐷𝑇𝑀 Continuous [m] Lateral deviation to a reference on the road at 

the TeamMate’s location, e.g. the centreline 

on a two-lane road 

𝐿𝑇𝑀 Discrete {0,… , ⌊𝐿𝑇𝑀⌋} The lane, the TeamMate is currently located 

in, e.g. fast or slow lane on a two-lane road 

𝑉𝑇𝑀 Continuous [m/s] Longitudinal velocity along the heading 

𝐴𝑇𝑀 Continuous [m/s²] Longitudinal acceleration 
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𝑊𝑇𝑀 Continuous [rad/s] Yaw-rate 

𝑆𝐿𝑇𝑀 Continuous [m] Length (along the x-axis)  

𝑆𝑊𝑇𝑀
 Continuous [m] Width (along the y-axis)  

𝐴𝐴𝑇𝑀 Continuous [%] Activation of the acceleration pedal  

𝐴𝐵𝑇𝑀 Continuous [%] Activation of the braking pedal  

𝐴𝑆𝑇𝑀 Continuous [rad] Steering wheel angle  

𝐺𝑇𝑀 Discrete {0,… , ⌊𝐺𝑇𝑀⌋} Selected gear  

 

Table 6: Description of variables for the representation of an object 𝒗 ∈ 𝑽 in the 

vicinity of the TeamMate vehicle considered for the second cycle. 

Variable 
Type Unit Description 

𝑋𝑣 Continuous [m] X-coordinate of the centre of the object 𝑣 ∈ 𝑽 in 

a two-dimensional spatial coordinate system 

relative to the position of the TeamMate vehicle 

𝑌𝑣 Continuous [m] Y-coordinate of the centre of the object 𝑣 ∈ 𝑽 in 

a two-dimensional spatial coordinate system 

relative to the position of the TeamMate vehicle 

Θ𝑣 Continuous [rad] Yaw-angle relative to a reference axis 

V𝑣 Continuous [m/s] Longitudinal velocity along the objects heading 

A𝑣 Continuous [m/s²] Longitudinal acceleration 

W𝑣 Continuous [rad/s] Yaw-rate  

S𝐿𝑣 Continuous [m] Length (along the x-axis)  

S𝑊𝑣
 Continuous [m] Width (along the y-axis)  

E𝑣 Binary {true,false} Binary flag, whether the object 𝑣 ∈ 𝑽 exists in 

the current traffic scene. 

C𝑣 Discrete {0,… , ⌊C𝑣⌋} Classification of the object 𝑣 ∈ 𝑽, e.g. PKW, 

LKW, VRU, etc. 
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𝐿𝑣 Discrete {0,… , ⌊L𝑣⌋} The lane, the object 𝑣 ∈ 𝑽 is currently located 

in, e.g. fast or slow lane on a two-lane road 

 

As previously described in D2.2 “Sensor Platform and Models including V&V 

results from 1st cycle”, the prediction of the spatial and temporal evolution of 

the traffic scene is based on so-called Constant Turn Rate and Acceleration 

(CTRA), resp. Constant Yaw-Rate and Acceleration (CYRA) motion models. The 

CYRA model is based on a state space 

𝒔𝑡 = (𝑥𝑡 , 𝑦𝑡, 𝜃𝑡, 𝑣𝑡, 𝑎𝑡 , 𝑤𝑡)𝑇 , 

where 𝑥 and 𝑦 (in 𝑚) denote the spatial coordinates of the center of the vehicle, 

𝜃 (in 𝑟𝑎𝑑) denotes the yaw angle in respect to a reference axis, 𝑣 (in 𝑚/𝑠) 

denotes the longitudinal velocity along the heading, 𝑎 (in 𝑚/𝑠2) denotes the 

longitudinal acceleration, and 𝑤 (in 𝑟𝑎𝑑/𝑠) denotes the yaw-rate. Let Δ (in 𝑠) 

denote some prediction time, the state transition equation for this model is 

given by 

𝒔𝑡+Δ = 𝑓𝐶𝑌𝑅𝐴(𝒔
𝑡,Δ) =

(

 
 
 

𝑥𝑡+Δ

𝑦𝑡+Δ

𝜃𝑡+Δ

𝑣𝑡+Δ

𝑎𝑡

𝑤𝑡 )

 
 
 

, 

where 

𝑥𝑡+Δ =

{
 

 𝑥𝑡 +
1

𝑤𝑡
[
𝑎𝑡

𝑤𝑡
(cos 𝜃𝑡+Δ − cos𝜃𝑡) + 𝑣𝑡+Δ sin 𝜃𝑡+Δ − 𝑣𝑡 sin 𝜃𝑡] , 𝑤𝑡 ≠ 0

𝑥𝑡 + (
1

2
𝑎𝑡(Δ)2 +Δ𝑣𝑡) cos 𝜃𝑡 , 𝑤𝑡 = 0

, 

𝑦𝑡+Δ =

{
 

 𝑦𝑡 +
1

𝑤𝑡
[
𝑎𝑡

𝑤𝑡
(sin 𝜃𝑡+Δ − sin𝜃𝑡) − 𝑣𝑡+Δ cos 𝜃𝑡+Δ + 𝑣𝑡 cos 𝜃𝑡] , 𝑤𝑡 ≠ 0

𝑦𝑡 + (
1

2
𝑎𝑡(Δ)2 +Δ𝑣𝑡) sin 𝜃𝑡 , 𝑤𝑡 = 0

, 
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𝜃𝑡+Δ = 𝜃𝑡 +Δ𝑤𝑡, 

and  

𝑣𝑡+Δ = 𝑣𝑡 +Δ𝑎𝑡. 

Let 𝑝(𝑺𝑣
𝑡 |𝐸𝑣

𝑡 = 𝑡𝑟𝑢𝑒, 𝒐1:𝑡) denote a current belief state for some object 𝑣 ∈ 𝑽, 

representing a six-dimensional multivariate Gaussian distribution. For 

simplicity of notation, we omit mentioning the conditions 𝐸𝑣
𝑡 = 𝑡𝑟𝑢𝑒, 𝒐1:𝑡 in 

general, such that in the following, we will e.g., simply use 𝑝(𝑺𝑣
𝑡 ) instead of 

𝑝(𝑺𝑣
𝑡 |𝐸𝑣

𝑡 = 𝑡𝑟𝑢𝑒, 𝒐1:𝑡). Given a belief state 𝑝(𝑺𝑣
𝑡 ) and using the CYRA motion-

model, we obtain a prediction for a future time step 𝑝(𝑺𝑣
𝑡+Δ) by approximating 

𝑝(𝑺𝑣
𝑡+Δ) = ∫𝑓𝐶𝑌𝑅𝐴(𝒔𝑣

𝑡 ,Δ) 𝑝(𝒔𝑣
𝑡 )𝑑𝒔𝑣

𝑡  

using the technique of unscented transformation (as previously described in 

D2.2 “Sensor Platform and Models including V&V results from 1st cycle”). 

3.4.2.2.2 Implementation 

As described in D5.1 “TeamMate System Architecture incl. open API for 2nd 

cycle”, integration of components in the TeamMate architecture is planned on 

a client-server model. Each component may provide services to and require 

services from other components, realized by the exchange of information 

based on socket communication. Due to the tight coupling between the 

prediction of the spatial and temporal evolution of the traffic scene and online 

risk assessment, we currently opt to integrate both functionalities in a single 

component for online risk assessment. Here, we limit our explanations to the 

prediction of the spatial and temporal evolution of the traffic scene. For a more 

detailed description, we refer to D3.5 “Concepts and algorithms incl. V&V 

results from 2nd cycle”. 
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The prediction of the spatial and temporal evolution of the traffic scene 

requires services from the sensor and communication platform in terms of 

belief state about the current state of the traffic situation. Furthermore, it 

requires a high precision map of the road network, allowing to infer the future 

behaviour of traffic participants. 

Provided with the most actual sensor data, the prediction of the spatial and 

temporal evolution of the traffic scene then works as follows: 

 Each cycle (currently repeated every 50ms) begins with an initialization: 

o Assuming that the sensor and communication platform uniquely 

identifies each detected object 𝑣 ∈ 𝑽 with an ID, the prediction of 

the spatial and temporal evolution of the traffic scene maintains 

an individual DBN for each object 𝑣 ∈ 𝑽 to infer the belief state over 

the potential behaviour hypotheses of the object. The component 

then checks, whether any DBN can be discarded due to the 

corresponding object no longer being present (e.g., due to an 

object leaving the sensor range) or whether any new DBN must 

be created (e.g., due to an object entering the sensor range). 

o For each detected object, the corresponding DBN is used to update 

its beliefs about the most probable behaviour hypothesis, e.g., in 

the case of the Peter scenario, whether the object intends to stay 

on its own or change to an adjacent lane. 

 After the initialization is complete, the algorithm attempts to sequentially 

predict the belief states 𝑝(𝑺𝑣
𝑡+𝑖Δ|ℎ𝑚𝑎𝑥

𝑡 ), 𝑖 = 1,… , 𝜂𝑚𝑎𝑥 for each object 𝑣 ∈ 𝑽. 

For this, a belief state 𝑝(𝑺𝑣
𝑡+𝑖Δ|ℎ𝑚𝑎𝑥

𝑡 ) is used to predict the next future 

state 𝑝(𝑺𝑣
𝑡+(𝑖+1)Δ|ℎ𝑚𝑎𝑥

𝑡 ). The process is repeated until either all belief states 

𝑝(𝑺𝑣
𝑡+𝑖Δ|ℎ𝑚𝑎𝑥

𝑡 ), 𝑖 = 1,… , 𝜂𝑚𝑎𝑥 have been predicted, or the available time is 

over, and a new cycle must be started. 

After the cycle is completed or has been aborted, the prediction of the spatial 

and temporal evolution of the traffic scene provides the most actual and 
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complete predicted belief states for all traffic participants as a service to other 

components. 
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3.5 E3.2 – Driving Task model 

The driving task model is not a software module, and therefore it is of a 

different quality compared with the enablers documented in this deliverable. 

It has been used in the context of the Peter scenario, using the experiment 

conducted by ULM for the E6.1 (Interaction strategy) as the empirical basis for 

the construction of several models. An understanding of this experiment is 

therefore necessary to explain the use of the modelling approach. 

Consequently, the modelling approach description has been moved to D4.4 

“TeamMate HMI design, implementation and V&V results from 2nd cycle”. 

3.5.1 Improvements 

For the prediction of the temporal and spatial evolution of the traffic scene in 

the 1st cycle, we assumed the yaw-rate and acceleration to be kept constant, 

such that 𝑎𝑡+Δ𝑡 = 𝑎𝑡 and 𝑤𝑡+Δ𝑡 = 𝑤𝑡 for any temporal step width Δ and number 

of steps 𝜂𝑚𝑎𝑥, i.e., we assumed that a traffic participant keeps the current yaw-

rate and acceleration over the complete prediction horizon 𝜂𝑚𝑎𝑥Δ. In the 2nd 

cycle, we addressed this severe limitation by incorporating: 

1) Simple but computationally inexpensive driver-models to better 

predict the future behaviour of traffic participants for different 

behaviour hypothesis. 

2) The use of Dynamic Bayesian Networks (DBN) to infer the most 

probable behaviour hypothesis for each traffic participant. 

Concerning 1), we defined a set of behaviour hypotheses. As we currently 

focus on the Peter scenario, we consider two very basic but computationally 

inexpensive “driver-models”, corresponding to two hypothetical behaviours, 

lane-keeping (LK) and lane-changing (LC), that can be used to predict the 
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yaw-rate when following the resp. behaviour hypotheses. For this, we redefine 

the computation of the state 𝒔𝑡+Δ as follows: 

𝒔𝑡+Δ =

(

 
 
 

𝑥𝑡+Δ

𝑦𝑡+Δ

𝜃𝑡+Δ

𝑣𝑡+Δ

𝑎𝑡+Δ

𝑤𝑡+Δ)

 
 
 

= 𝑓𝐶𝑌𝑅𝐴(𝒔
𝑡, 𝑀,Δ), 

with 𝑥𝑡+Δ, 𝑦𝑡+Δ, 𝜃𝑡+Δ, 𝑣𝑡+Δ as provided by the original CYRA motion-model, 

but defining 

𝑎𝑡+Δ = 𝑔𝑎(𝑎
𝑡,Δ) = 0.95𝑎𝑡 

(as a placeholder for the utilization of more advanced models for the 

longitudinal control behaviour to be developed during the third cycle), and  

𝑤𝑡+Δ = 𝑔ℎ(𝑤
𝑡, 𝑀, 𝑥𝑡+Δ, 𝑦𝑡+Δ, 𝜃𝑡+Δ,Δ), ℎ ∈ {𝐿𝐾, 𝐿𝐶}. 

For lane-keeping behaviour, 𝑔𝐿𝐾(𝑤
𝑡, 𝑀, 𝑥𝑡+Δ, 𝑦𝑡+Δ, 𝜃𝑡+Δ, Δ), we assume that the 

vehicle adapts its yaw-rate in order to keep itself aligned with the course of 

the road, and, once the lateral deviation from the middle of its current lane 

exceeds a threshold of currently ±0.5m, attempts to minimize the lateral 

deviation. For lane-changing behaviour, 𝑔𝐿𝐶(𝑤
𝑡, 𝑀, 𝑥𝑡+Δ, 𝑦𝑡+Δ, 𝜃𝑡+Δ, Δ), we 

assume that the vehicle adapts its yaw-rate to minimize the angle between 

the current heading (in respect to the course of the road) and a target point 

on the middle of the adjacent lane in a distance of 50m. 

Concerning 2), having a set of simple driver-models able to predict the 

behaviour for different behaviour hypotheses at our disposal, we can use them 

to maintain a belief state over the different behaviour hypotheses, to better 

predict the spatial and temporal evolution of the traffic scene. The basic idea 

is as follows: given some past belief state 𝑝(𝑺𝑣
𝑡−Δ) and present belief state 𝑝(𝑺𝑣

𝑡 ) 

for each object 𝑣 ∈ 𝑽, provided by the sensor and communication platform, we 
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start from the past belief state 𝑝(𝑺𝑣
𝑡−Δ) and predict the short-term future 

behavior under the lane-keeping and lane-changing hypotheses. By comparing 

these predictions with the actual current belief state 𝑝(𝑺𝑣
𝑡 ), we can infer a 

posterior probability over the different hypotheses. We then use the current 

belief state 𝑝(𝑺𝑣
𝑡 ) to predict the long-term evolution of the state for the most 

probable hypothesis.  

 

More specifically, for each 𝑣 ∈ 𝑽, we maintain a simple DBN akin to a Hidden 

Markov Model, with a very simple transition model and a more complex 

observation model. Let 𝐻𝑣, 𝑉𝑎𝑙(𝐻𝑣) = {ℎ𝐿𝐾, ℎ𝐿𝐶} be the hidden state, representing 

the considered behavior hypotheses, and let 𝑶𝑆𝑣 denote a yet to be defined 

observation vector. We assume a discretized time line with a time granularity 

of 50ms. Let Δ𝐻 = min(𝑡 − 1,20),then for any number of 𝑇 time slices, the DBN 

defines the following joint probability distribution: 

𝑝(𝐻𝑣
1:𝑇 , 𝑶𝑆𝑣

1:𝑇) = 𝑝(𝑶𝑆𝑣
1 |𝐻𝑣

1)∏𝑝(𝐻𝑣
𝑡|𝐻𝑣

𝑡−1)𝑝 (𝑶𝑆𝑣
𝑡 |𝐻𝑣

𝑡, 𝑶𝑆𝑣
𝑡−Δ𝐻)

𝑇

𝑡=2

, 

where 

𝑝 (𝑶𝑆𝑣
𝑡 |𝐻𝑣

𝑡, 𝑶𝑆
𝑡−Δ𝐻) = ∫∫𝑝(𝒔∗

𝑡−Δ𝐻|𝑶𝑆𝑣
𝑡−ΔH , 𝐻𝑣

𝑡) 𝑝 (𝒔∗
𝑡|𝒔∗

𝑡−ΔH , 𝐻𝑣
𝑡) 𝑝(𝑶𝑆𝑣

𝑡 |𝒔∗
𝑡)𝑑𝒔∗

𝑡−ΔH 𝑑𝒔∗
𝑡 . 

 

During runtime, at each time step 𝑡 and while the object 𝑣 is within the sensor 

range, we use the model to maintain a belief state 𝑝(𝐻𝑣
𝑡|𝒐𝑆𝑣

1:𝑡). The observation 

model 𝑝 (𝑶𝑆𝑣
𝑡 |𝐻𝑣

𝑡, 𝑶𝑆𝑣
𝑡−Δ𝐻) should be understood as follows: 𝑶𝑆𝑣

𝑡 , and 𝑶𝑆𝑣
𝑡−Δ𝐻 resp., 

basically represent mean vector of the corresponding belief state 𝑝(𝑺𝑣
𝑡 ), resp. 

𝑝 (𝑺𝑣
𝑡−Δ𝐻), provided by the sensor and communication platform. More 
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specifically, let 𝑝(𝑺𝑣
𝑡 ) = 𝑁(𝝁𝑣

𝑡 , 𝚺𝑣
𝑡), 𝑝 (𝑺𝑣

𝑡−Δ𝐻) = 𝑁 (𝝁𝑣
𝑡−Δ𝐻 , 𝚺𝑣

𝑡−Δ𝐻), 𝑝(𝑺∗
𝑡) = 𝑁(𝝁∗

𝑡 , 𝚺∗
𝑡), 

and 𝑝 (𝑺∗
𝑡−Δ𝐻) = 𝑁 (𝝁∗

𝑡−Δ𝐻 , 𝚺∗
𝑡−Δ𝐻). We define  

𝑝 (𝑺∗
𝑡−Δ𝐻|𝑶𝑆𝑣

𝑡−ΔH , 𝐻𝑣
𝑡) ∝ 𝑝 (𝑶𝑆𝑣

𝑡−ΔH|𝑺∗
𝑡−Δ𝐻) 𝑝 (𝑺∗

𝑡−Δ𝐻|𝐻𝑣
𝑡), 

where for each ℎ ∈ 𝐻𝑣
𝑡, 𝑝 (𝑺∗

𝑡−Δ𝐻|ℎ) = 𝑁(𝟎,∞𝑰) and 𝑝 (𝑶𝑆𝑣
𝑡−ΔH|𝑺∗

𝑡−Δ𝐻) =

𝑁 (𝝁∗
𝑡−Δ𝐻 , 𝚺𝑣

𝑡−Δ𝐻). Given these, and when observing 𝑶𝑆𝑣
𝑡−ΔH = 𝒐𝑆𝑣

𝑡−ΔH we have that 

𝑝 (𝑺∗
𝑡−Δ𝐻|𝒐𝑆𝑣

𝑡−ΔH , ℎ) = 𝑝 (𝑺𝑣
𝑡−Δ𝐻). For each ℎ ∈ 𝐻𝑣

𝑡, we use the belief state 

𝑝 (𝑺∗
𝑡−Δ𝐻|𝑶𝑆𝑣

𝑡−ΔH , ℎ) and the hypothesis-based vehicle-models to infer  

𝑝 (𝑺∗
𝑡|𝑶𝑆𝑣

𝑡−ΔH , ℎ) = ∫𝑝 (𝒔∗
𝑡−Δ𝐻|𝑶𝑆𝑣

𝑡−ΔH , 𝐻𝑣
𝑡) 𝑝 (𝑺∗

𝑡|𝒔∗
𝑡−ΔH , 𝐻𝑣

𝑡)𝑑𝒔∗
𝑡−ΔH 

via the technique of unscented transformation. Once again defining that 

𝑝(𝑶𝑆𝑣
𝑡 |𝑺∗

𝑡) = 𝑁(𝝁∗
𝑡 , 𝚺𝑣

𝑡), we can derive the likelihood for 𝑝 (𝒐𝑆𝑣
𝑡 |𝐻𝑣

𝑡, 𝒐𝑆
𝑡−Δ𝐻) as  

𝑝 (𝒐𝑆𝑣
𝑡 |𝐻𝑣

𝑡, 𝒐𝑆
𝑡−Δ𝐻) = ∫𝑝 (𝒔∗

𝑡|𝒐𝑆𝑣
𝑡−ΔH , 𝐻𝑣

𝑡) 𝑝(𝒐𝑆𝑣
𝑡 |𝒔∗

𝑡) 𝑑𝒔∗
𝑡 . 

As such, we can use the model to maintain a belief state 𝑝(𝐻𝑣
𝑡|𝒐𝑆𝑣

1:𝑡) about the 

probability of different behavior hypothesis of other traffic participants. From 

this belief state, we then obtain the most probable hypothesis ℎ𝑚𝑎𝑥
𝑡 =

argmax
h
𝑝(𝐻𝑣

𝑡 = ℎ|𝒐𝑆𝑣
1:𝑡) and use it to predict the spatial and temporal evolution of 

an object 𝑣 ∈ 𝑽, by incrementally inferring 𝑝(𝑺𝑡+𝑖Δ|ℎ𝑚𝑎𝑥
𝑡 ), 𝑖 = 1, … , 𝜂𝑚𝑎𝑥, i.e., 

filtered predictions for the future state.   

For online risk assessment, we currently use a temporal step width Δ = 1𝑠 and 

a maximal number of steps 𝜂𝑚𝑎𝑥 = 10, resulting in an overall prediction horizon 

of 𝜂𝑚𝑎𝑥Δ = 10𝑠. Internally, we use a smaller temporal step width Δint = 0.05𝑠, 

and derive 𝒔𝑡+Δ from 𝒔𝑡 by recursively using 𝒔𝑡+𝑖Δint =

𝑓𝐶𝑌𝑅𝐴(𝒔
𝑡+(𝑖−1)Δ𝑖𝑛𝑡 , 𝑀,Δ𝑖𝑛𝑡), 𝑖 = 1, … ,

Δ

Δ𝑖𝑛𝑡
.  
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4 Validation of enablers 

This section presents the verification and validation on component level of the 

enablers, i.e. how to validate that the enablers support the cooperation of the 

driver and the TeamMate car. In addition, different kind of results are included 

like pictures, sample data and, of course, quantitative results related to the 

described testing methodologies. Finally, conclusions are drawn from the 

results. 
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4.1 E1.1 – Driver monitoring system with driver state model for 

distraction and drowsiness 

4.1.1 Drowsiness experiment 

The experiment was conducted in the dynamic driving simulator. The aim of 

the test was to record data which reflect driver drowsiness and the process of 

getting drowsy while driving. Main part of the experiment was a two-hour drive 

on an empty highway in a night-time simulation. During that drive, various 

indicators of driver drowsiness including a Karolinska Sleepiness Scale (KSS) 

rating by an expert as well as camera videos were recorded. The experiment 

was performed with N=30 drivers from different age groups. On average, 

drivers started the drive on KSS level 4 and reached a maximum level of KSS 

8 or KSS 9. 

Table 7 shows the requirements used for the technical validation of E1.1. 

Table 7: Requirements and metrics used for the technical validation of E1.1 

Requirement 
Metric Success criteria 

Drowsiness detection Detection rate >70%  acceptable 

>80%  good 

>90%  excellent 

 

4.1.1.1 Test course 

The main part of the experiment consisted of a roughly two-hour-drive on an 

empty highway at night. Before the driver entered the highway, he drove 

through a short urban section (about 5 minutes) with medium traffic, 

intersections, pedestrians etc. On the highway, there was only little traffic. 
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About every 5 minutes, the driver needed to overtake a slow vehicle on the 

right lane and there were repeatedly faster vehicles overtaking on the left lane. 

The speed limit for the driver was set to 120 km/h. 

After about two hours of highway driving, the driver reached again a town and 

the test drive ended with roughly 5 minutes of driving through the city. The 

city scenario at the end was very similar to the scenario in the beginning. 

On the highway, driver’s state was rated regularly by the driver himself and 

by an expert watching the drive. For both ratings, the KSS was used in a 

version in which every point of the scale has a verbal anchor (Akerstedt, 

Anund, Axelsson & Kecklund [11], 2014; see Figure 18).  

About every ten minutes, the driver was shown the KSS on a display in the 

vehicle and he was asked to judge his own current state on the scale. The first 

KSS rating was given directly after entering the highway. On the highway, 

there were repeated ratings of the driver every ten minutes and of the expert 

every five minutes. Then there was a driver and expert rating directly before 

seeing the approaching city at the end of the drive. The last rating of driver 

and expert were during the urban scenario at the end. 

Between the KSS-ratings, the expert annotated signs of fatigue. Different 

types of fatigue symptoms were counted for sections of about 5 minutes of 

driving. The different assessed symptoms were based on the ORD Behavior & 

                                    

11 Akerstedt, T., Anund, A., Axelsson, J. & Kecklund, G. (2014). Subjective sleepiness is a 

sensitive indicator of insufficient sleep and impaired waking function. J Sleep Res. 23, 240-

252. 
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Mannerism Checklist (Wiegand, McClafferty, McDonald & Hanowski [12], 2009). 

The original ORD checklist was not used because it is too complex for a 

continuous online rating. Therefore, similar symptoms were combined and 

counted together. 

4.1.1.2 Data logging 

The data logging was performed by considering: 

 The video of the Driver Monitoring camera which can be processed offline 

for the development of the driver’s state model. 

 A video of the cabin environment and the road scene. 

 The annotation of the expert. 

4.1.1.3 Study procedure 

After arrival, the participant was asked to fill in a consent form in which he 

agreed that the data will be logged. Next, the participant was informed about 

the content of the study and the planned procedure and filled in a short pre-

questionnaire mostly with demographic items. During the instruction, the KSS 

was explained to the participant and he was asked to give his first KSS rating 

in the pre-questionnaire.  

Next, the participant was seated in the driving simulator, adjusted his seat. 

Before the test drive, a short reference measurement was recorded in which 

                                    

12 Wiegand, D.M., McClafferty, J., McDonald, S.E. & Hanowski, R.J. (2009). Development and 

Evaluation of a Naturalistic Observer Rating of Drowsiness Protocol. Report. VTTI, Blacksburg, 

Virginia. 
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the driver was asked to look at different areas in the vehicle mock-up and to 

make certain faces. Then, the two hours test drive was started. 

4.1.1.4 Study sample 

 In total, N=30 drivers took part in the experiment.  

 Their age ranges between 23 and 79 years. 

 There was 12 woman and 18 mans 

 9 were wearing glasses 

4.1.1.5 Expert results 

Figure 18 shows the change of KSS-ratings during the experiment. The expert 

rating at the beginning of the drive around level 4. Maximum values rated 

during the drive are on average on level 9 and in the urban section at the end 

of the drive the fatigue goes down to level 5 on average. 4 drivers suffered 

micro-sleeps. 
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Figure 18: KSS-ratings over time 

4.1.1.6 Test results 

Table 8 shows the results of the evaluation done end of November on this 

database. 
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Table 8: Results of the evaluation at the end of November 

 

 

The results show that the model is performing when considering two states: 

Alert which include Alert and Slightly Drowsy and Sleepy which include Drowsy, 

Sleepy and Sleeping state (DSS).  The achieved detection rate is 76% so above 

70% which is acceptable according to the agreed Automate requirements. 

 

A more detailed analysis of the results shows that the drowsiness model has 

difficulties to differentiate Alert and slightly drowsy state. This is not a big issue 

as drowsy state are mostly informative to the driver and don’t require any 

intrusive warning. We noted also the same issue regarding the Drowsy and 

Sleepy states again this issue can be handle by the HMI as for both state the 

driver should be warned. We must also note that the evaluation of drowsy and 

sleepy state is biased by the accuracy of the expertise which has difficulties to 

differentiate these two states. 
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4.1.2 Visual Attention/Distraction experiment 

The experiment was conducted in a static vehicle. The aim of the test was to 

record data of driver’s looking at different area of the vehicle in agreement 

with the Automate requirements.  

The experiment was performed with N=20 drivers. 10 men and 10 women; 5 

wearing glasses. Drivers were asked to look at different areas of the vehicle 

for a defined duration. 

4.1.2.1 Test protocol 

The test protocol is divided in the following steps: 

Step 1: Initialisation; duration: 40s 

 Start Recording 

 Open the door, enter the car 

 Adjust seat, position, put Seatbelt ON 

 Do a look around of all instruments in the car to be sure the face tracker 

is in place and everything works 

 Focus the camera (no more talking and no head movements for the first 

two steps). The instructor will precise when to start moving the head. 

 

Step 2: focus on camera; Duration: 25s 

 Look at the camera 

 Without moving the head do Look Around 

o Left (mirror) 

o Up (ceiling) 

o Right (mirror) 
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o Down (knees) 

o Look at the camera 

o Eye Closure 

o Close your eyes 

o Open your eyes 

o Short blink 

 Back to road (neutral position) 

 

Step 3: focus on road; Duration: 25s 

 Look at the road 

 Without moving the head do Look Around 

o Left (mirror) 

o Up (ceiling)  

o Right (mirror) 

o Down (knees) 

o Look at the road 

o Eye Closure 

o Close your eyes 

o Open your eyes 

o Short blink 

 Back to road (neutral position), You can move your head for next 

movements (looking at instruments) 
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Step 4: Focus on central rear view mirror; Duration: 15s 

 Look at the rear-view mirror  

o Close your eyes 

o Open your eyes 

o Short blink 

 Back to road (neutral position) 

 

Step 5: Focus on left rear view mirror; Duration: 15s 

 Look at the left-side mirror 

o Close your eyes  

o Open your eyes 

o Short blink 

 Back to road (neutral position) 

 

Step 6: Focus on right rear view mirror; Duration: 15s 

 Look at the left-side mirror 

o Close your eyes  

o Open your eyes 

o Short blink 

 Back to road (neutral position) 
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Step 7: Focus on central display; Duration: 15s 

 Look at the left-side mirror 

o Close your eyes  

o Open your eyes 

o Short blink 

 Back to road (neutral position) 

 

Step 8: Focus on own lap; Duration: 15s 

 Look at the left-side mirror 

o Close your eyes  

o Open your eyes 

o Short blink 

 Back to road (neutral position) 

4.1.2.2 Results 

The accuracy analysis is still ongoing. Initial results are presented below. 

The eye/head gaze out of the road (distraction) evaluation show results 

coherent with the driving ones: 

 Smartphone recognition ratio: 90%; 

 Navigation recognition ratio: 75%; 

 Central mirror: 75%; 

 Left mirror: 80%; 

 Right mirror: 90%. 

In conclusion all areas are detected with a detection rate above 75% which is 

already fully acceptable in regard to the automate requirements.  
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4.2 E1.2 – V2x communication 

The aforementioned V2x messages are standardized, and will be used in 

different scenarios of the project. Therefore, the verification and validation of 

V2x component focus on these specific messages. 

In this deliverable initial test cases are described, and their results are 

presented. In the next months, it is planned to perform field tests that model 

the Eva and Martha scenarios as close as possible from V2x aspect. 

The initial test are split into simple test cases to build up and verify the V2x 

component step-by-step as described in D2.3 “Metrics and Experiments for 

V&V of the driver, vehicle and situation models in the 2nd cycle”, according to 

the requirements summarized in Table 9. 

Table 9: Requirements and metrics used for the technical validation of E1.2 

Requirement 
Metric Success criteria 

Validation of DENM 

message reception 

Packet loss rate >90% 

Validation of CAM message 

reception 

Packet loss rate >95% 

Validation of CAM message 

reception 

Jitter <10% 

 

The parameters of the performed laboratory test are the following: 

 test duration: ~1 hour (~3600 sec); 

 communicating ITS stations:  

o 1 RSU (Road Side Unit – Infrastructure); 

o 1 OBU (On-board Unit – Vehicle); 

 generated and transmitted V2x messages:  
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o DENM (from RSU to OBU); 

o CAM (from OBU to everyone, now to RSU); 

 monitoring, logging method: captured packets/messages are logged in 

pcap files. 

Table 10 contains the short test case descriptions and the results. 

Table 10: Test case descriptions and related results 

Test case 
Description Results 

Verification of 

V2X 

communication 

The communication is established 

between two V2x capable components. 

The transmitted information is received 

by the vehicle. 

Yes 

Verification of 

DENM message 

communication 

The communication is established 

between two V2X capable components. 

The transmitted DENM messages from 

RSU is received by vehicle’s OBU. The 

message have to be assembled 

properly. 

Yes 

Verification of 

CAM message 

communication 

The communication is established 

between two V2X capable components. 

The transmitted CAM messages is 

received by the vehicle’s OBU. The 

message have to be assembled 

properly. 

Yes 

Verification of 

DENM 

messages 

The received DENM messages are 

relevant information about the traffic 

situation, i.e. they contain information 

about road works ahead. 

Yes 

(see Figure 19) 
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Verification of 

CAM messages 

The received CAM messages are 

relevant information about the vehicle 

status, i.e. they contain information 

about vehicle’s current position, speed 

and heading. 

Yes 

(see Figure 20) 

Validation of 

DENM message 

reception 

DENM messages are received properly 

during the test period. 99% percent of 

messages is received. 

Number of transmitted 

and received packets: 

3600 

Packet loss rate: >99% 

Threshold values of 

metrics are fulfilled 

Validation of 

CAM message 

reception 

CAM messages are received properly 

during the test period. 99% percent of 

messages is received with low jitter. 

Number of transmitted 

and received packets: 

3600 

Packet loss rate: >99% 

Jitter: <10% in ~95% 

of time  

Threshold values of 

metrics are fulfilled 

 

The latter two test cases are related to the MARTHA and EVA scenarios, 

therefore, they will be extended taking into account the communication 

distances as requirements, and will be performed during field tests. 

Figure 19 and Figure 20 present the captured DENM and CAM messages. As 

mentioned, the wireless transmission is logged in pcap files. These files are 

processed and decoded by Wireshark, which is a popular network protocol 

analyser tool. It also decodes messages into human readable form. The red 

boxes indicate the most important information contained by the DENM and 
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CAM messages, which are used by the TeamMate car in the scenarios. Since 

the tests were carried out indoor, therefore the speed values carried by the 

CAM messages are very low (practically it is never zero due to the inaccuracy 

of GPS). 

 

Figure 19: Captured DENM RWW message 
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Figure 20: Captured CAM message 
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4.3 E2.1 – Driver Intention Recognition 

Following the plans previously described in D2.3 “Metrics and Experiments for 

V&V of the driver, vehicle and situation models in the 2nd cycle”, validation of 

the driver model for intention and behaviour recognition was performed using 

a set of independent test data 𝐷𝑇𝑒𝑠𝑡, representing annotated “ground-truth” 

time-series of manual driving on rural roads, akin to the Peter scenario.  

Table 11 shows the requirements for the technical validation of E2.1. 

Table 11: Requirements and metrics used for the technical validation of E2.1 

Requirement 
Metric Success criteria 

R_EN2_model1.10 Precision and Recall >80% 

R_EN2_model1.11 Accuracy >80% 

 

4.3.1 Experiments for data gathering 

For gathering data for training and validation of the driver model for intention 

and behaviour recognition, the AutoMate partner OFFIS (OFF) conducted a 

data collection study for the Peter scenario in the OFF driving simulator. 

4.3.1.1 Scenario 

An initial rural road track (two lanes, one for each driving direction) was 

designed by the project partner ULM and provided to OFF. Because the 

objective of the study conducted by OFF was different, it was necessary to 

adapt this original track. The main objective here was to gather data about 

manual overtaking behaviour on rural roads. Therefore, it was necessary to 

include sufficient straight road sections which allowed subjects to accomplish 
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an overtaking manoeuvre. To reduce the chances of motion sickness two 

things were adjusted:  

 The radii of most of the curves was increased to remove stronger braking 

actions. In these situations, drivers would expect a strong longitudinal 

force, which cannot be simulated in a fixed-based simulator. These 

situations should be avoided at least for subjects with less or no 

experience in driving simulators.  

 The density of surrounding objects (trees, houses etc.) and also the 

appearance of higher mountains especially in curves was reduced. This 

reduces the effect that the visible environment seen on the 3 projection 

surfaces moves/turns around the driver which is a key problem 

regarding motion sickness. During the experiment only one subject 

reported symptoms of motion sickness. 

The resulting total track length was 30.8 km with a general speed limit of 100 

km/h and six curves with an 80 km/h speed limit. Participants were instructed 

to stop at a parking side at the end of the track. Traffic flow in both directions 

consisted of trucks and passenger cars with varying driving speed. The vehicles 

on the ego lanes were driving with an average speed of 72km/h which allowed 

subjects to overtake trucks as well as passenger cars. The oncoming traffic 

instead drove at different speeds: trucks between 65-75 km/h and passenger 

cars between 70-105 km/h. 

Although it might not be realistic that passenger cars drive at the very same 

speed as trucks, the reason for this was the following: once a driver gets stuck 

behind a lead car, multiple vehicles are set up within a smaller area ahead 

which automatically leads to a small traffic jam, especially, if faster vehicles 
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approach a slower vehicle. Such situations sometimes lead to braking cascades 

and the driver might also no longer be able to overtake anymore.  

4.3.1.2 Procedure 

After filling the consent form and checking the validity of their driving license 

a short introduction to the driving simulator was given. Afterwards, each 

participant was trained for at least 10 minutes, but training was not stopped 

before they felt comfortable with the vehicle control and the overtaking 

scenario. No specific training scenario was implemented, instead the original 

experiment scenario was used. After the training session, an eye tracker was 

calibrated. After the training, a short verbal, scripted instruction was given. 

 

After training and calibration, the actual experiment was started which was 

divided in three blocks: in each of them participants had to drive the 30.8 km 

track with different traffic conditions.  

The following procedure was used to adapt the amount of traffic individually 

based on subject’s overtaking behaviour: for passive drivers in the training we 

started with “very low traffic” ahead, whereas those drivers who easily 

overtook cars already in the training started with the “low traffic” condition. 

Based on the number of overtaking manoeuvres the traffic condition of the 

consecutive blocks was reduced or raised between “very low”, “low”, 

“medium”, and “high” traffic conditions. In contrast, the amount of oncoming 

traffic was held constant in all conditions. 

 

After the first and second block, participants had a 5-minute resting period 

and a re-calibration of the eye tracker was done before the next block started.  
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Before the last block, time pressure was imposed on the subject with the goal 

to foster more and probably risky overtaking manoeuvre. After the last block 

information about each subject’s driving experience was captured using a 

paper form. For each subject the study took around two hours. 

4.3.1.3 Materials and methods 

The research-driving simulator at OFFIS is a fixed-based simulator platform, 

as shown in Figure 21. 

 

Figure 21: Fixed-based simulator platform at OFF. 

The basic simulator software is SILAB [13], which is used to create the road 

geometry, landscape and traffic scenario. Amongst others, it includes modules 

for vehicle dynamics, sensor models, data recording and also most of the 

scripting for empirical studies is done within the software or its extensions. 

The driving simulator implements a three beamer-based visualization, with a 

maximum field of view of 150 degree. Two displays with a resolution of 

1024*768 are used for the simulation of left and right exterior mirror. Three 

                                    

13 www.wivw.de/silab 
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Lexium Schneider CAN bus servo drives apply force feedback and vibration 

signals with adjustable amplitude and frequency on the steering wheel as well 

as accelerator and brake pedal. For recording the eye movements, we use an 

Ergoneers Dikablis Professional eye-tracker system (Full HD resolution, 60Hz 

tracking). 

To be able to analyse the gaze behaviour of the subjects, eye-tracking was 

used during the study. The Dikablis eye-tracker offers the possibility to 

investigate areas of interest (AOI'S) within the recorded scene, based on the 

detection of visual markers. For this purpose, markers were mounted next to 

each of the three rear view mirrors (left, right and interior). Four additional 

markers were located at the corners of the frontal projection screen and one 

more marker was projected onto the back of each truck which had to be 

overtaken by the participants. Specialized procedures based on displaying sets 

of fixation points were applied for the calibration and measurement of the eye 

tracking quality. 

4.3.1.4 Participants 

Subjects were acquired by announcements at the local university and were 

required to be licensed drivers with at least 2000 km/year driving experience. 

All subjects received a compensation of 10 EUR/hour for their participation. In 

total 18 subjects participated the study, one of them experienced motion 

sickness in the very beginning. Thus, we ended up with valid data from 17 

subjects. Subjects were 28 years old (SD=7.1) on average (9 male and 8 

female). Participants were licensed on average for 10 years (SD=6.6), and 

drove 16941 km/year on average (SD=13961). 
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4.3.2 Data Preparation 

During each trial, with a frequency of 50 Hz, data samples containing 

simulation and eye-tracking information was recorded, where the simulation 

data was comprised (among other information) of the state of the participant’s 

vehicle (in the following denoted as the TeamMate vehicle), and the states of 

up to twelve vehicles in the vicinity of the TeamMate vehicle.  

During post-processing, using an editor to visualize the recorded data, each 

data sample was first manually annotated with the shown driving behaviour 

(LCL, LCR, or LK) based on visual judgement of the traffic situation. 

Afterwards, each sample was automatically annotated with whether the driver 

intended to drive on the right or on the left lane, based on an arbitrary but 

conservative rule that a change in the target lane intention is assumed to be 

formed at least up to one second prior to the annotated beginning of a lane 

change manoeuvre.  

During post-processing, the trials of a single participant had to be removed 

due to data inconsistencies. As such, the result of the annotation process was 

a set of 48 time-series of multivariate data for manual driving in the Peter 

scenario. From this annotated experimental data, the first and third trial of 

each participant were selected as a training set 𝐷𝑇𝑟𝑎𝑖𝑛, consisting of 2234536 

samples or approx. 620 minutes, while the remaining trials, consisting of 

1218784 samples or approx. 338 minutes were reserved as a test set 𝐷𝑇𝑒𝑠𝑡 for 

validation. 
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4.3.3 Validation process 

To recapitalize the overall validation process and metrics used for this 

validation cycle, let 𝐷𝑇𝑒𝑠𝑡 be composed by a number of 𝑚 trials, where each 

trial is a time-series consisting of a number of 𝑛𝑗 , 𝑗 = 1,… ,𝑚 data samples 𝑑𝑗
𝑘 =

(𝑖𝑗
𝑘, 𝑏𝑗

𝑘, 𝑙𝑗
𝑘, 𝒐𝐼𝑗

𝑘, 𝒐𝐵𝑗
𝑘) , 𝑘 = 1,… , 𝑛𝑗, annotated by experts with the assumed correct 

intention 𝑖𝑗
𝑘 and behaviour 𝑏𝑗

𝑘 (c.f., Section 4.3.2).  

 

In this cycle, we focused on the component for intention recognition and 

neglected the influence of the component for behaviour recognition. As such, 

for each sample 𝑑𝑗
𝑘, we used the different realizations of the driver model, 

𝑀𝐺𝑎𝑢𝑠𝑠, 𝑀𝐺𝑀𝑀, and 𝑀𝐿𝑅, to infer a filtered belief state over the intentions 

𝑃 (𝐼𝑗
𝑘|𝑙𝑗

1:𝑘, 𝒐𝐼𝑗
1:𝑘), given all available sensory input in the resp. time-series up to 

the sample. The output of the model was then defined as the most probable 

target lane intention 

𝑖𝑗,𝑜𝑢𝑡
𝑘 = argmax

i
𝑃 (𝐼𝑗

𝑘 = 𝑖|𝑙𝑗
1:𝑘, 𝒐𝐼𝑗

1:𝑘). 

For the assessment of intention recognition, the (annotated) “true” and 

predicted target lane intentions 𝑖𝑗
𝑘 and 𝑖𝑗,𝑜𝑢𝑡

𝑘  were first mapped onto actual lane 

change intentions (in that a lane change intention is present if the current lane 

and the target lane intentions differ) by defining 𝑖�̂�
𝑘 = 𝟏(𝑙𝑗

𝑘 ≠ 𝑖𝑗
𝑘) and 𝑖�̂�,𝑜𝑢𝑡

𝑘 =

𝟏(𝑙𝑗
𝑘 ≠ 𝑖𝑗,𝑜𝑢𝑡

𝑘 ), where 𝟏 denotes the indicator function. Interpreting the existence 

(we note that the ground truth is based on a manual annotation of the test 

data and therefore subject to error) of a lane change intention as positive and 

the absence as negative, we constructed a binary confusion matric for each 

model, as shown in Figure 22. 
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  Predicted 

  Positive Negative 

Ground truth 
Positive  TP FN 

Negative FP TN 

Figure 22: Binary confusion matrix.  

The actual metric proposed in D2.3 “Metrics and Experiments for V&V of the 

driver, vehicle and situation models in the 2nd cycle” is called the accuracy and 

defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
. 

 

However, as the accuracy proved to be a poor metric for assessing the 

performance of the model, we additionally introduce the following, more 

meaningful, metrics: 

 The precision, representing the fraction of correctly recognized 

intentions among all predicted intentions, defined as  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. 

A high precision indicates that the model only recognizes intentions if 

there actually exists an intention. 

 The recall (also known as sensitivity or true positive rate (TPR)), 

representing the fraction of correctly recognized intentions over the total 

amount of true intentions, defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. 

A high recall indicates that most of the intentions are recognized as such. 
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 The harmonic mean of precision and recall, the traditional F-measure or 

balanced F-score, defined as 

𝐹-𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. 

 And, for the sake of completeness, the False Positive Rate (FPR), defined 

as  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. 

4.3.4 Datasets used 

The test set 𝐷𝑇𝑒𝑠𝑡 was obtained from the experimental data conducted for 

training and evaluation of the probabilistic driver models (c.f. Section 4.3.2). 

More specifically, the experimental data was split into a training set 𝐷𝑇𝑟𝑎𝑖𝑛, 

including approx. 70% of the experimental data (2234536 samples or approx. 

620 minutes), and a test set 𝐷𝑇𝑒𝑠𝑡, including the remaining experimental data 

(1218784 samples or approx. 338 minutes).  

The different realizations of the component for intention recognition 𝑀𝐺𝑎𝑢𝑠𝑠, 

𝑀𝐺𝑀𝑀, and 𝑀𝐿𝑅 have been learned exclusively using the training data 𝐷𝑇𝑟𝑎𝑖𝑛. 

The resulting models were then subsequently validated on the test set 𝐷𝑇𝑒𝑠𝑡. 

Being temporal models, intended to provide their output each 50ms, we only 

use every third sample for the actual validation, resulting in an effective test 

set 𝐷𝑇𝑒𝑠𝑡, consisting of 406267 samples, covering 338 minutes of driving over 

each one trial for each of the 16 participants.  

4.3.5 Results 

Figure 23 shows the results in terms of a binary confusion matrix and 

corresponding metrics for the model 𝑀𝐺𝑎𝑢𝑠𝑠, Figure 24 shows the results for the 
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model 𝑀𝐺𝑀𝑀, and Figure 25 shows the results for the model 𝑀𝐿𝑅. In all cases, 

to allow a better interpretation of the results, values in brackets denote the 

corresponding values, if we limit the focus on the case, where the driver was 

located on the right lane, therefore allowing the interpretation of intentions 

purely as overtaking intentions. 

  

Figure 23: Confusion matrix and corresponding metrics of interest for the model 

𝑴𝑮𝒂𝒖𝒔𝒔.  

 
 

Figure 24: Confusion matrix and corresponding metrics of interest for the model 

𝑴𝑮𝑴𝑴. 

 
 

Figure 25: Confusion matrix and corresponding metrics of interest for the model 

𝑴𝑳𝑹.  
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Focusing on the results for 𝑀𝐺𝑎𝑢𝑠𝑠 (Figure 23), we see that the model has a 

rather poor accuracy of 0.543. On a positive note, it was able to correctly 

recognize 28248 of 31666 samples annotated with a lane change intention, 

resulting in a high recall of 0.892. However, this comes with the drawback of 

182198 wrongly recognizing intentions, resulting in an abysmal precision of 

only 0.134, and consequently an F-score of only 0.233.  

As apparent for 𝑀𝐺𝑀𝑀 (Figure 24), allowing for a more complex representation 

via the use of GMMs instead of simple Gaussian, we are able to improve the 

accuracy to 0.787. On a positive note, the model is able to improve the 

precision to (a still low) 0.241, while only reducing the recall to 0.807, resulting 

in a slightly improved F-score of 0.372.  

For obvious reasons, these results leave much room for improvement. We 

note, however, that many of the false positives, resulting in low precisions and 

consequently F-scores, result from the driver “checking” for an opportunity to 

overtake (which would imply an intention to overtake in the classical sense) 

but not doing so, even if such an opportunity exists. We will tackle to 

incorporate this knowledge into the models for driver intention recognition 

during the 3rd cycle.  

Lastly, when considering the overall results, 𝑀𝐿𝑅 has the highest accuracy 

(0.945) and precision (0.836), and, despite a low recall of 0.368, the highest 

F-score of 0.511. Using the accuracy as a metric for performance, 𝑀𝐿𝑅 would 

seem like the most successful candidate for driver intention recognition. 

However, when considering only the cases, where the TeamMate vehicle is 

located on the right lane, we see a dramatic drop in both precision and recall, 

and consequently, in the F-score. This can be explained by the fact, that 𝑀𝐿𝑅 

basically classifies every situation on the right lane as resulting in an absence 

of an overtaking intention (For comparison, a model that simply classifies 
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every sample as negative would achieve an accuracy of 0.922). As such, 

despite the highest accuracy, 𝑀𝐿𝑅 must be seen as the worst candidate for 

intention recognition. For the moment, we will consider 𝑀𝐺𝑀𝑀 as our starting 

point for the third cycle. 

 

Enhancing the model incorporating the influence of the component for 

behaviour, i.e., using 𝑃 (𝐼𝑗
𝑘|𝑙𝑗

1:𝑘, 𝒐𝐼𝑗
1:𝑘, 𝒐𝐵𝑗

1:𝑘) = ∑ 𝑃 (𝐼𝑗
𝑘, 𝑏𝑘|𝑙𝑗

1:𝑘, 𝒐𝐼𝑗
1:𝑘, 𝒐𝐵𝑗

1:𝑘)𝑏∈𝐵  instead 

of 𝑃 (𝐼𝑗
𝑘|𝑙𝑗

1:𝑘, 𝒐𝐼𝑗
1:𝑘), we are able to slightly improve on the overall performance, 

as exemplary shown in Figure 26 for 𝑀𝐺𝑀𝑀. A preliminary inspection of the test 

data implies that the remaining false positives may result from a miss-

classification of the human behaviour to “peek out” behind the lead vehicle by 

performing half of a lane change as lane changes to the left lane. 

  

Figure 26: Confusion matrix and corresponding metrics of interest for the model 

𝑴𝑮𝑴𝑴. 

In the next cycle, we will focus on enhancing the internal structure and 

provided input to improve on the precision of the models. 
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4.4 E3.1 – Situation and vehicle model  

Table 12 shows the requirements for the technical validation of E3.1. 

Table 12: Requirements and metrics used for the technical validation of E3.1 

Requirement 
Metric Success criteria 

R_EN3_model1.6 Functional test Functional test 

successful 

R_EN3_model1.7 Ratio of correct 

predictions 

>90% 

 

4.4.1 Semantic enrichment of the situation model  

For validating this module, we used the F1-score 𝐹1 =
2

1

𝑟𝑒𝑐𝑎𝑙𝑙
+

1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

, where  

𝑟𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇𝑃

𝑇𝑃+𝐹𝑃
. 𝑇𝑃, 𝐹𝑃 and 𝐹𝑁 are the true positive, false 

positive and the false negative ratios. In Figure 27, the system predicts that 

the ego-vehicle (red vehicle) will stop in the near future because of the red 

traffic light. According to the ground truth the ego-vehicle stops in the next 2 

seconds. The prediction is therefore a true positive for the stop maneuver and 

a true negative for all other maneuvers. The predicted maneuver for the blue 

vehicle is to enter the intersection, due to the green traffic light. According to 

the ground truth this vehicle stops in 2 seconds. Hence the predicted maneuver 

is a false positive for the stop maneuver, a false negative for the driving 

maneuver and a true negative for all other maneuver. 
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Figure 27: Example of predicted and ground truth vehicle maneuvers at an 

intersection 

For estimating the F1-score, ground truth data from scene objects and 

manoeuvres must be generated. In this project we focus on the following 

scenarios: 

1. Lane Following without intersection, 

2. Intersection without traffic light and signal (priority to the right), 

3. Intersection with traffic signal, 

4. Intersection with traffic light, 

5. Intersection with traffic light and signal. 

For a first validation, the scenarios mentioned above will be first generated in 

the simulation. The final validation will be done on real traffic data. The 

experiment for generating the test data is described in detail in Deliverable 

D3.5 “Concepts and algorithms incl. V&V results from 2nd cycle”. The final 

validation result will be annexed to D2.5. 
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4.4.2 Predicting the future evolution of the traffic scene  

Following the plans previously described in D2.3 “Metrics and Experiments for 

V&V of the driver, vehicle and situation models in the 2nd cycle”, validation of 

the prediction of the temporal and spatial evolution of the traffic scene was 

performed using a set of independent test data 𝐷𝑇𝑒𝑠𝑡, representing ground truth 

time-series of traffic situations.  

To recapitalize and concretize the overall validation process and metrics used, 

let 𝐷𝑇𝑒𝑠𝑡 be composed by a number of 𝑚 trials, where each trial 𝑗, 𝑗 = 1,… ,𝑚 is 

a time-series consisting of a number of 𝑛𝑗 , data samples 𝑑𝑗
𝑘 =

(𝒙𝑇𝑀
𝑘 , 𝒙𝑣1

𝑘 , … , 𝒙𝑣𝑛𝑽
𝑘 ) , 𝑘 = 1,… , 𝑛𝑗 and a map 𝑀. For each sample 𝑑𝑗

𝑘, and each object 

𝑣 ∈ 𝑽, we infer the most probable behaviour hypothesis ℎ𝑚𝑎𝑥 and predict a 

sequence of future states 𝑝 (𝑺𝑗,𝑣
𝑘+𝑖Δ|ℎmaxj,v

𝑘 ) , 𝑖 = 1,… , 𝜂𝑚𝑎𝑥. 

Concerning the validation of the prediction of the evolution of the traffic 

situation, it is most important that the predicted regions encompass the true 

future location of the vehicle. As a metric to validate the performance, we 

therefore choose the concept of a “correct classification rate” as the ratio of 

correct predictions and the number of total predictions. More specifically, let 

0 < 𝛿 < 1 denote an arbitrary threshold, we can define a region that covers an 

area for which the probability of any state 𝒔𝑗,𝑣
𝑘+𝑖Δ𝑡 is above 𝛿, i.e., 

𝑝 (𝒔𝑗,𝑣
𝑘+𝑖Δ𝑡|ℎmaxj,v

𝑘 ) < 𝛿. For each predicted state 𝑝 (𝑺𝑗,𝑣
𝑘+𝑖Δ𝑡|ℎmaxj,v

𝑘 ) , 𝑖 = 1,… , 𝑛, we 

then check whether the true state 𝒔𝑗,𝑣
𝑘+𝑖Δ𝑡 of object 𝑣 ∈ 𝑽 has a probability 

𝑝 (𝒔𝑗,𝑣
𝑘+𝑖Δ𝑡|ℎmaxj,v

𝑘 ) < 𝛿. Denoting such an occurrence as a failure and resp. as a 

success otherwise, we used the metric  

𝐶𝑅𝛿
𝑖 =

#𝑠
#𝑠 + #𝑓

, 
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representing the ratio of successes #𝑠 and the sum of successes #𝑠 and failures 

#𝑓 for a temporal prediction horizon 𝑖Δ and a specific level of 𝛿 for assessing 

the quality of the prediction of the temporal and spatial evolution of the traffic 

scene. For the actual validation, we abstract from the current velocity, 

acceleration, and yaw-rate, which are not used for online risk assessment, and 

instead focus on the valid prediction of the location and pose 

𝑝 (𝑥𝑗,𝑣
𝑘+𝑖Δ𝑡, 𝑦𝑗,𝑣

𝑘+𝑖Δ𝑡, 𝜃𝑗,𝑣
𝑘+𝑖Δ𝑡|𝐸𝑗,𝑣

𝑘 = 𝑡𝑟𝑢𝑒, 𝒐𝑗
1:𝑘, ℎmaxj,v

𝑘 ) and, for the sake of comparison, 

on the valid prediction of the location 𝑝 (𝑥𝑗,𝑣
𝑘+𝑖Δ𝑡, 𝑦𝑗,𝑣

𝑘+𝑖Δ𝑡|𝐸𝑗,𝑣
𝑘 = 𝑡𝑟𝑢𝑒, 𝒐𝑗

1:𝑘, ℎmaxj,v
𝑘 ).  

The metric is used to assess the fulfilment of requirements R_EN3_model1.6 

and R_EN3_model1.7, stating that the “integrated model must predict possible 

evolutions of the traffic situation in respect to potential interventions of the 

driver” (R_EN3_model1.6), resp. “[…] potential interventions of the 

automation” (R_EN3_model1.7) with a correct rate of the prediction above 

90% to be fulfilled. For the second cycle, we abstracted from the potential 

interventions of the driver and automation. For a perfect prediction and a 

region that encloses 100(1.0 − 𝛿)% of the probability mass, we would, in the 

perfect case, expect a failure-rate of 100𝛿%. As such, we will treat the 

requirements as fulfilled, if the ratio of correct predictions is above 90(1.0 − 𝛿)% 

for each prediction horizon 𝑖Δ and level 𝛿 independently. 

4.4.2.1 Dataset for validation 

The test set 𝐷𝑇𝑒𝑠𝑡 was obtained from the simulator study conducted for training 

and evaluation of the probabilistic driver models (see Section 4.3.2).  

The scenario comprised approx. 30.8 km of a rural road track inspired by the 

Peter scenario with one lane for each direction and a primary speed limit of 

100 km/h. Traffic flow in both directions consisted of trucks and passenger 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<22/12/2017> 
Named Distribution Only 

Proj. No: 690705 

Page 91 of 96 

 

cars with varying driving speed. The vehicle on the right lane were driving with 

an average speed of 72km/h. The oncoming traffic instead drove at different 

speeds: trucks between 65-75 km/h and passenger cars between 70-105 

km/h.  

Participants had to manually traverse the scenario by controlling a simulated 

vehicle until reaching a parking side at the end of the track. Participants were 

instructed to follow the traffic rules, but were free to overtake lead vehicles, if 

deemed necessary or desired. Each participant had to absolve a total of three 

trials, with the overall traffic conditions adapted between trials to encourage 

overtaking manoeuvres. 

In total, 18 subjects participated the study, one of them experienced motion 

sickness in the very beginning. Thus, we ended up with valid data from 17 

subjects. Subjects were 28 years old (SD= 7,1) on average (9 male and 8 

female). Participants were licensed on average for 10 years (SD=6,6), and 

drove 16941km/year on average (SD= 13961). Post-analysis of the data 

resulted in the exclusion of the data of another participant, due to 

inconsistencies in the data recording.  

The first and third trial of each participant was provided as experimental data 

for training of the models for intention recognition, while the second trial of 

each participant was reserved as a general test set 𝐷𝑇𝑒𝑠𝑡 for validation of the 

models for intention recognition, the prediction of the temporal and spatial 

evolution of the traffic scene, and online risk assessment. 

The experimental data was recorded with a frequency of 60Hz. As the 

prediction of the temporal and spatial evolution of the traffic scene internally 

works with a frequency of 20Hz, we treat each time-series as information 

sequentially provided by the sensor and communication platform, and only use 

every third sample for the actual validation. As such, the test set 𝐷𝑇𝑒𝑠𝑡, 
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effectively consists of 406262 samples used for validation, covering approx. 

338 minutes of simulated driving behaviour in the Peter scenario. 

Due to the test set arising from a simulator study in which the traffic flow was 

automatically controlled by a traffic simulation, the resulting behaviour of 

traffic participants in the vicinity of the TeamMate vehicle is highly predictable 

and therefore potentially unrealistic. As a means to provide a more realistic 

assessment for humanly controlled traffic participants, we additionally perform 

our validation on the prediction of the temporal and spatial evolution of the 

humanly controlled “TeamMate” vehicle. 

4.4.2.2 Results 

We performed the validation for five different levels of 𝛿, 𝛿0.5 = 0.5, 𝛿0.25 = 0.25, 

𝛿0.1 = 0.1, 𝛿0.05 = 0.05, and 𝛿0.01 = 0.01. We report both the results focusing on 

location and pose, and focusing solely on location. To provide a more intuitive 

understanding of the results, we additionally report the average two-

dimensional Euclidean distance (AED) between the predicted location and the 

ground truth.  

As 𝐷𝑇𝑒𝑠𝑡 provided ground-truth data, we need to transform the ground-truth 

data into belief states. Let 𝑠𝑗,𝑣
𝑘 = (𝑥𝑗,𝑣

𝑘 , 𝑦𝑗,𝑣
𝑘 , 𝜃𝑗,𝑣

𝑘 , 𝑣𝑗,𝑣
𝑘 , 𝑎𝑗,𝑣

𝑘 , 𝑤𝑗,𝑣
𝑘 ) denote the ground 

truth of the state of a vehicle 𝑣 ∈ 𝑽 in a sample 𝑑𝑗
𝑘, we use the following belief 

state as a simulated provision of the sensor and communication platform: 

𝑝(𝑆𝑗,𝑣
𝑘 ) = 𝑁

(

 
 
 
 
 

𝝁 =

(

 
 
 
 
 

𝑥𝑗,𝑣
𝑘

𝑦𝑗,𝑣
𝑘

𝜃𝑗,𝑣
𝑘

𝑣𝑗,𝑣
𝑘

𝑎𝑗,𝑣
𝑘

𝑤𝑗,𝑣
𝑘
)

 
 
 
 
 

, 𝚺 =

(

  
 

0.1
0.1
0.1
1.0
0.01
0.01)

  
 

2

𝑰6

)

 
 
 
 
 

. 
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Furthermore, to counterbalance our strong assumptions concerning the 

selected yaw-rate, after each prediction step, we inflated the resulting 

covariance matrix in the following way: 

𝚺∗ = 𝚺 + Δ

(

  
 

0.1
0.1
0.01
1.0
0.1

0.00245)

  
 

2

𝑰6 

Table 13 shows the result for surrounding traffic participants. As apparent, the 

correct classification rate is for the most part above the corresponding level of 

𝛿, therefore fulfilling the requirements of being above 90(1.0 − 𝛿)%. Although a 

promising result, this mainly results from the behavior of the automatically 

controlled vehicles being highly predictable. 

Table 13: Ratio of successes #𝒔 and the sum of successes #𝒔 and failures #𝒇 for the 

prediction of the temporal and spatial evolution of the automatically controlled 

surrounding traffic participants, for different prediction horizons 𝒊 (in seconds) and 

different levels of 𝛅. Ratios limited to the location are shown in brackets, 𝑨𝑬𝑫 

denotes the average Euclidean distance. Bold values denote that the result is 

above the required 𝟗𝟎(𝟏. 𝟎 − 𝜹)%. 

i #𝒔 + #𝒇 𝑪𝑹𝜹𝟎.𝟓
𝒊  𝑪𝑹𝜹𝟎.𝟐𝟓

𝒊  𝑪𝑹𝜹𝟎.𝟏
𝒊  𝑪𝑹𝜹𝟎.𝟎𝟓

𝒊  𝑪𝑹𝜹𝟎.𝟎𝟓
𝒊  𝑨𝑬𝑫 

1 974180 
0.9226 

(0.9033) 

0.9494 

(0.9382) 

0.9630 

(0.9577) 

0.9693 

(0.9676) 

0.9776 

(0.9846) 
0.0914 

2 947303 
0.9455 

(0.9272) 

0.9690 

(0.9602) 

0.9782 

(0.9755) 

0.9804 

(0.9795) 

0.9829 

(0.9825) 
0.2626 

3 920951 
0.9405 

(0.9181) 

0.9660 

(0.9575) 

0.9761 

(0.9732) 

0.9791 

(0.9776) 

0.9823 

(0.9817) 
0.5053 

4 895087 
0.9319 

(0.9030) 

0.9641 

(0.9525) 

0.9752 

(0.9720) 

0.9785 

(0.9768) 

0.9823 

(0.9815) 
0.7872 
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5 869836 
0.9273 

(0.8819) 

0.9611 

(0.9469) 

0.9752 

(0.9707) 

0.9788 

(0.9770) 

0.9826 

(0.9818) 
1.0749 

6 845064 
0.9224 

(0.8651) 

0.9596 

(0.9433) 

0.9766 

(0.9704) 

0.9801 

(0.9782) 

0.9840 

(0.9830) 
1.3729 

7 820691 
0.9194 

(0.8541) 

0.9611 

(0.9411) 

0.9783 

(0.9732) 

0.9819 

(0.9797) 

0.9854 

(0.9847) 
1.7065 

8 796966 
0.9181 

(0.8490) 

0.9659 

(0.9408) 

0.9795 

(0.9761) 

0.9828 

(0.9812) 

0.9863 

(0.9857) 
2.0821 

9 773688 
0.9175 

(0.8435) 

0.9679 

(0.9441) 

0.9803 

(0.9772) 

0.9833 

(0.9822) 

0.9865 

(0.9862) 
2.4833 

10 750899 
0.9186 

(0.8385) 

0.9683 

(0.9467) 

0.9805 

(0.9776) 

0.9834 

(0.9824) 

0.9864 

(0.9863) 
2.8966 

 

To provide a potentially more accurate picture, Table 14 shows the result for 

the humanly controlled TeamMate vehicle itself. In contrast to the 

automatically controlled vehicles, we see that the correct classification rate 

only completely satisfies for 𝛿 = 0.5. As such, the requirements of 𝐶𝑅𝛿
𝑖 >

90(1.0 − 𝛿)% is only fulfilled up to 𝜂𝑚𝑎𝑥Δ = 4𝑠 for 𝛿0.01 = 0.01 for location and 

orientation and only fulfilled up to 𝜂𝑚𝑎𝑥Δ = 3𝑠 for 𝛿0.05 = 0.05 when considering 

the location in isolation. An inspection of the 𝐴𝐸𝐷 implies the major issue being 

a poor prediction of the speed, resp. acceleration, resulting in a poor prediction 

of the travelled distance for higher prediction horizons. We will address this 

issue in the third cycle, by the incorporation of driver-models for longitudinal 

control. 
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Table 14: Ratio of successes #𝒔 and the sum of successes #𝒔 and failures #𝒇. 

i #𝒔 + #𝒇 𝑪𝑹𝜹𝟎.𝟓
𝒊  𝑪𝑹𝜹𝟎.𝟐𝟓

𝒊  𝑪𝑹𝜹𝟎.𝟏
𝒊  𝑪𝑹𝜹𝟎.𝟎𝟓

𝒊  𝑪𝑹𝜹𝟎.𝟎𝟏
𝒊  𝑨𝑬𝑫 

1 405942 
0.8610 

(0.8870) 

0.9146 

(0.9515) 

0.9458 

(0.9748) 

0.9594 

(0.9835) 

0.9754 

(0.9910) 
0.1002 

2 405622 
0.7907 

(0.7622) 

0.8562 

(0.8483) 

0.8946 

(0.8950) 

0.9122 

(0.9150) 

0.9361 

(0.9422) 
0.4582 

3 405302 
0.7298 

(0.6873) 

0.8126 

(0.7910) 

0.8631 

(0.8554) 

0.8840 

(0.8808) 

0.9125 

(0.9137) 
1.1032 

4 404982 
0.6909 

(0.6299) 

0.7790 

(0.7498) 

0.8360 

(0.8218) 

0.8594 

(0.8533) 

0.8928 

(0.8916) 
2.0307 

5 404662 
0.6616 

(0.5875) 

0.7564 

(0.7229) 

0.8122 

(0.7962) 

0.8381 

(0.8283) 

0.8756 

(0.8720) 
3.2034 

6 404342 
0.6410 

(0.5572) 

0.7397 

(0.7012) 

0.7960 

(0.7791) 

0.8226 

(0.8109) 

0.8610 

(0.8559) 
4.5836 

7 404022 
0.6266 

(0.5378) 

0.7298 

(0.6879) 

0.7869 

(0.7669) 

0.8121 

(0.7995) 

0.8489 

(0.8432) 
6.1402 

8 403702 
0.6193 

(0.5261) 

0.7245 

(0.6800) 

0.7811 

(0.7599) 

0.8052 

(0.7921) 

0.8397 

(0.8341) 
7.8474 

9 403382 
0.6133 

(0.5182) 

0.7193 

(0.6722) 

0.7747 

(0.7533) 

0.7985 

(0.7844) 

0.8314 

(0.8260) 
9.6818 

10 403062 
0.6050 

(0.5107) 

0.7123 

(0.6633) 

0.7675 

(0.7455) 

0.7922 

(0.7771) 

0.8243 

(0.8190) 
11.6285 
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5 Conclusions and Outlook 

This document presented all the results related to the sensor platform and 

models including the verification and validation results of task 2.2 to task 2.5 

from the 2nd cycle. 

During the first cycle initial models were developed, their performance were 

validated and limitations were collected. During this cycle the enablers were 

improved to extend the known limitations and be able to meet the 

requirements of the defined use cases. Then, these enhanced models were 

evaluated as well in different ways. The results show that all the enablers are 

able to provide useful data for other components of the TeamMate car allowing 

for the unique feature set of it. 

In this document, we also highlighted the scenarios, in which the enablers play 

crucial roles. That is important to show how the enablers contribute to achieve 

the goals of the project. 

In the next steps the emphasis will be on integration, i.e. to assemble the 

components into the demonstrators, and then to evaluate the performance of 

the demonstrators against their baseline to quantify the benefit and progresses 

of the TeamMate car approach. 

Finally, the results of this V&V activity and the results of the next integration 

cycle allow us to draw the conclusions and find the proper ways to further 

improve the enablers during the 3rd cycle. 


	1 Introduction
	2 How the WP2 enablers contribute to the implementation
	3 Status of WP2 enablers in cycle 2
	3.1 E1.1 – Driver monitoring system with driver state model for distraction and drowsiness
	3.1.1 Scenario and uses case where E1.1 is relevant
	3.1.2 Implementation
	3.1.2.1 Driver monitoring system hardware
	3.1.2.2 Drowsiness
	3.1.2.3 Visual attention/distraction


	3.2 E1.2 – V2x communication
	3.2.1 Scenario and uses case where E1.2 is relevant
	3.2.2 Implementation

	3.3 E2.1 – Driver Intention Recognition
	3.3.1 Scenario and uses case where E2.1 is relevant
	3.3.2 Concept
	3.3.3 Implementation

	3.4 E3.1 – Situation and vehicle model
	3.4.1 Scenario and uses case where E3.1 is relevant
	3.4.2 Implementation
	3.4.2.1 Semantic enrichment of the situation model
	3.4.2.2 Predicting the future evolution of the traffic scene (OFF)
	3.4.2.2.1 Concept
	3.4.2.2.2 Implementation


	3.5 E3.2 – Driving Task model
	3.5.1 Improvements


	4 Validation of enablers
	4.1 E1.1 – Driver monitoring system with driver state model for distraction and drowsiness
	4.1.1 Drowsiness experiment
	4.1.1.1 Test course
	4.1.1.2 Data logging
	4.1.1.3 Study procedure
	4.1.1.4 Study sample
	4.1.1.5 Expert results
	4.1.1.6 Test results

	4.1.2 Visual Attention/Distraction experiment
	4.1.2.1 Test protocol
	4.1.2.2 Results


	4.2 E1.2 – V2x communication
	4.3 E2.1 – Driver Intention Recognition
	4.3.1 Experiments for data gathering
	4.3.1.1 Scenario
	4.3.1.2 Procedure
	4.3.1.3 Materials and methods
	4.3.1.4 Participants

	4.3.2 Data Preparation
	4.3.3 Validation process
	4.3.4 Datasets used
	4.3.5 Results

	4.4 E3.1 – Situation and vehicle model
	4.4.1 Semantic enrichment of the situation model
	4.4.2 Predicting the future evolution of the traffic scene
	4.4.2.1 Dataset for validation
	4.4.2.2 Results



	5 Conclusions and Outlook

