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Executive Summary 

This deliverable describes the current state of the enablers developed in WP3 

(E4.1 - Planning and execution of safe manoeuvre, E4.2 - Learning of 

intention from driver, E5.1 - Online risk assessment) during the first half of 

the 3rd cycle to make them ready for the final integration into the 

demonstrator vehicles. 

Section 2 deals with the improvements and changes of the enablers 

compared to the previous cycles. For E4.1 these are the usage of an 

intelligent driver model and concept changes that should lead to a much 

faster planning time, compared to the approach from cycle 2. For E4.2 the 

main changes are an improved method for online sample generation using 

forward-backward inference and the possibility to update Gaussian Mixture 

models distribution inside the Driver Intention Recognition model. For 5.1, 

there is now a functionality to assess a given trajectory, and the 

computational efficiency is improved. Additionally for each enabler a 

statement on possible data privacy issues is given. 

Section 3 describes runtime performance, datasets and the experiments 

conducted to validate the enablers from a technical point of view, according 

to the validation plan, to the requirements and to the metrics described in 

D3.6. Additionally it gives a qualitative comparison with the State of the Art. 

Section 4 concludes the document and provides for some enablers lessons 

learned concerning, e.g., dealing with a cold start problem. 
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1 Introduction 

As described in D3.5 the enablers developed in WP3 contribute to the 

implementation of the “automation to the human” (A2H) direction of support 

of the AutoMate cooperation concept. 

The activities in the Automate project are organized in 3 cycles to guarantee 

that the maturity of the technologies developed in the project is iteratively 

increased while assessing that the progresses are consistent with the needs 

of the demonstrators and, in turn, with the overall concept and objectives of 

the project.  

In deliverable D3.2 “Catalogue of basic driving manoeuvres and associated 

task distributions”, we had laid out certain principles for driver task 

allocation. These principles were based on the available literature as well as 

the result of discussions among the consortium members, and should be 

understood as a documentation of the state of our discussion at that point in 

time. Instead, the framework, which assigns control to either the driver or 

the automation based on believes about their respective competence to 

handle a current driving situation, should be seen as the starting point for 

various further deliberations within the consortium, and within different work 

packages. Some of the framework’s branches suggested a mandatory shift of 

control to the automation in cases of an incapacitated driver. While such 

Human-to-Automation (H2A) shifts of control are being discussed within 

scenarios involving medical emergencies (e.g. Mirwaldt, Bartels & Lemmer, 

2012), they are not the focus of the TeamMate car concept. Within the 
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AutoMate project, drivers will retain the possibility to overrule the system, in 

cases of a system malfunction such as sensor errors or even bugs in the 

software.  

This deliverable describes the current state of the enablers developed in WP3 

during the first half of the 3rd cycle, the improvements and changes 

compared to the previous cycles, as well as the experiments conducted to 

validate them from a technical point of view, according to the validation plan, 

to the requirements and to the metrics described in D3.6. In such a way, the 

new Enabler versions should ready for the final integration into the 

demonstrator vehicles. 

The document is structured as follows. The status of the enablers is 

presented in Chapter 2 including the improvements and latest developments 

of them. Next, Chapter 3 describes the validation of enablers along with 

validation methodologies and the results. Finally, Chapter 4 concludes the 

document. 
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2 Status of WP3 enablers in the 3rd cycle 

2.1 E4.1 - Planning and execution of safe manoeuvre (ULM) 

The concept of the trajectory planner was changed in a way that social 

interaction is incorporated directly via driver models. This modification was 

made because some problems appeared concerning braking and holding a 

safety distance to a leading vehicle.  

The trajectory planner developed is already integrated and tested in the Ulm 

vehicle. During the last consortium meeting in Oldenburg, there was WP3 

workshop which was used to perform integration of some software modules 

into the software chain of the demonstrators. During the workshop, the 

trajectory planner was integrated into the VED architecture. The main 

problems that appeared are on the one hand the divergence in the used map 

format and on the other hand the fact that, in Ulm, a Linux operating system 

is used, while in Vedecom, Windows operating system is used. Nevertheless, 

with the support of Ulm, some major problems could be solved and VED can 

continue with the integration task but everything seems to go well so far.  

There are some comments of the project officers and reviewers that were 

raised during the midterm review meeting in Brussels. One major comment 

is that there is a waste of resources since 2 trajectory planners are 

developed within the project, one by ULM and one by VED. In fact, the VED 

planner was not developed for AutoMate but was already existent and 

adapted for AutoMate. However, it is now attempted that ULM trajectory 

planner can also be used at VED. 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<17/10/2019> Named Distribution Only 

Proj. No: 690705 

Page 13 of 78 

 

At Ulm, there was already a trajectory planner available. However, there 

were some problems with computation times and sampling trajectories 

lateral to the centre line. Therefore, a new concept was developed in 

AutoMate. This concept has very low computation times and, even if the 

basic concept is designed for longitudinal traffic, there is enough flexibility to 

use it for overtaking as well, which is a basic requirement for Automate since 

overtaking is required within the PETER scenario. 

2.1.1 Concept 

The main change of the concept is the modification of the cost functional that 

is now composed as follows: 

𝐽(𝒙0, 𝒙−1, … , 𝒙𝑁−1) = ∑ 𝐿(𝒙𝑖, 𝒙𝑑𝑑,𝑖, 𝒙𝑑𝑑𝑑,𝑖)Δ𝑡

𝑖=2

+ 𝑤𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ||𝒙𝑟𝑒𝑓,𝑁−1 − 𝒙𝑁−1||
2

2

 Δ𝑡 

The Langrangian function 𝐿 is composed as 

𝐿 = 𝑤𝑠𝑝𝑎𝑡𝑖𝑎𝑙  𝑗𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝑤𝑎𝑐𝑐𝑗𝑎𝑐𝑐 + 𝑤𝑗𝑒𝑟𝑘𝑗𝑗𝑒𝑟𝑘. 

With the spatial term 

𝑗𝑠𝑝𝑎𝑡𝑖𝑎𝑙,𝑖 = ||𝒙𝑟𝑒𝑓,𝑖 − 𝒙||
2

2

 

The acceleration term 

     

𝑗𝑎𝑐𝑐,𝑖 = ||𝐱𝑑𝑑,𝑖||
2

2

 

And the jerk term 

𝑗𝑗𝑒𝑟𝑘,𝑖 = ||𝒙𝑑𝑑𝑑,𝑖||
2

2

. 
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To adhere to kinematic constraints acceleration bounds are included: 

     𝑥𝑑𝑑𝑑,𝑖 ≤ 𝑎𝑚𝑎𝑥, 𝑖 = 2, … , 𝑁 − 2. 

Where 𝒙𝑟𝑒𝑓(𝑡) is referred to as the reference trajectory and is calculated using 

the intelligent driver model (IDM) equations [1]. Position, acceleration and 

jerk at the i-th point are indicated as 𝒙,𝑖, 𝒙𝑑𝑑,𝑖 and 𝒙𝑑𝑑𝑑,𝑖 respective. To be able 

to apply the IDM equations, all traffic participants have to be projected on 

the centre line. Then the IDM equations are applied to obtain a reference 

trajectory. The reference trajectory is then transformed back in the Cartesian 

coordinate system. To overcome the problem that the reference trajectory is 

only located on the centre line the above optimization problem is solved.  It 

is also important to mention that the first three points of the trajectory are 

fixed parameters of the problem. This is because we need to ensure that the 

initial position, orientation, velocity and acceleration as well, correspond to 

the real state of the ego vehicle. The ensurance by fixing the first three 

points is due to the fact that the yaw angle is calculated by two adjacent 

points. Velocity and acceleration are determined by applying finite 

differences. To smooth the final trajectory and make it comfortable to vehicle 

passengers, acceleration and jerk terms are inserted. This complements the 

verification of the requirement R_EN4_model1.1. 

2.1.2 Improvements 

Since many parts of the concept were exchanged as explained in the concept 

section, it is hard to exactly mention improvements comparing to the 

concept described e.g. in D3.3. Instead, we like to highlight some strengths 
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of the method. An important point we want to emphasize is the really low 

computation time of the method, therefore there are not any problems 

concerning real-time capability. Furthermore we can directly consider leading 

vehicles using a driver model for social interaction. Further details are to find 

in [2]. 

2.1.3 Implementation 

The implementation is done in C++. Dependencies used are on the one hand 

“Eigen” a library for linear algebra application and “Worhp” a library for 

optimization problems.  

Necessary inputs are: 

• the map data, which is currently a reference line on the lane it is 

intended to drive on, 

• Vehicle tracks in the form of rectangle boxes, 

• Speed limit contained in the digital map, 

• the ego vehicle position to determine the initial trajectory states,  

• the HMI input to release the overtaking manoeuvre for the PETER 

scenario.  

In Ulm, the planner is integrated within the “ADTF” framework. 

Privacy Issues 

There are no problems concerning privacy issues since the environmental 

information that is used for planning does contain any person specific 

information. 
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2.2 E4.2 - Learning of intention from driver (HMT) 

In the context of AutoMate, the purpose of the algorithms to learn the 

driving intention from the driver is to enable the system to adapt its 

automation strategies to the driver’s preferences and guarantee a human 

expert-like driving behaviour.  

The Learning of intention from driver is based on the Driver Intention 

Recognition (DIR) model from WP2 and shall adapt the model parameters of 

an initial DIR during driving to create an individualized DIR, which should 

detect intentions of its corresponding driver more robustly than the initial 

DIR. The main focus is the detection and prediction of lane change intentions 

during the PETER scenario. In addition, the individualization of a model, to 

detect the intention to enter a roundabout during the EVA scenario, is a valid 

option. 

For the development of the learning of intention from driver in AutoMate, we 

started with a pre-existing framework, consisting of libraries and algorithms 

for the creation and utilization of (Dynamic) Bayesian Networks, originally 

developed during the former EU project HoliDes2. However, for AutoMate 

several changes and extensions were made. With respect to Enabler 4.2 

these are, for example, the general ability to store model parameters in a 

way that they can be updated during runtime, the update methods for 

different distribution types used by the DIR, and methods for an online 

sample generation.  

 

2 www.holides.eu 
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In the following, it is described how the TeamMate car learns from the driver 

during the third cycle of AutoMate. 

2.2.1 Concept 

The concept for the Learning of intention from driver has already been 

described in D3.5. The algorithms of this enabler extend the software for the 

aforementioned DIR model. The DIR model is basically a dynamic Bayesian 

Network that creates estimations about the intentions of a human driver. As 

already mentioned the intention to change the driving lane is focussed. The 

intention itself is considered as a hidden process, which creates observable 

effects. 

The parameters of the initial DIR model are learned offline by using expert 

annotated multivariate time-series of driving data. In this case, the intention 

is not hidden in training data and the model is learned with complete data. 

For the case of Enabler 4.2 the expert annotation is not an option since it 

requires a lot of time and effort. Thus, the intentions remain hidden at first 

and the algorithm has to handle incomplete data. For each point in time 𝑡  

the current observations of the traffic situation 𝒐𝑡 are received. To learn the 

driving intention lane change the first problem is to determine if and when a 

lane change happened, as well as to estimate when the lane change 

manoeuvre started or the intention was formed. By detecting that the ego 

vehicle actually changes its lane at time 𝑡, the intention 𝐼𝑡 can be assumed as 

known. The estimation of the intention before 𝑡 can be formulated as a 

smoothing problem: 

𝑝(𝑰𝑡−𝑥|𝑶1:𝑡)  ∝  𝑝(𝑰𝑡−𝑥|𝑶1:𝑡−𝑥)𝑝(𝑶𝑡−𝑥+1:𝑡|𝑰𝑡−𝑥) 
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Once the intention is estimated, the data for updating the DIR model can be 

considered as complete. We refer to this process as the online sample 

generation. For more detail on this point, please see the previous 

deliverables D3.5 and D3.3. 

The second problem is the actual update of the distribution parameters of 

the DIR model. This relies on Bayesian parameter learning and the usage of 

hyper-parameters Θ. The hyper-parameters describe probability distributions 

over the model parameters and can be updated as new evidence becomes 

available through observations. The values of the model parameters can then 

be inferred. For more details on this point, please see the previous 

deliverables D3.5 and D3.3. 

2.2.2 Improvements 

Online sample generation 

Until the second cycle the implemented online sample generation relied on 

the detection of certain events like the actual change of the ego lane 

mentioned in the previous section. For the third cycle, the detection of 

certain events is still supported. Like in the cycles before, this requires the 

definition of certain simple rules like 𝐼𝐹 𝑒𝑔𝑜_𝑙𝑎𝑛𝑒𝑡−1! = 𝑒𝑔𝑜_𝑙𝑎𝑛𝑒𝑡 𝑇𝐻𝐸𝑁  𝐼𝑡 = 1. 

For the estimation of the intention before 𝑡, the smoothing problem is solved 

by performing forward-backward inference utilizing the current DIR model. 

The forward-backward inference is a two-pass approach. In the first pass, 

the so called forward pass, the algorithm calculates the forward probabilities 

by filtering from 1 to  𝑡 − 𝑥 to obtain 𝑝(𝑰𝑡−𝑥|𝑶1:𝑡−𝑥). In the backward pass, the 

backward probabilities 𝑝(𝑶𝑡−𝑥+1:𝑡|𝑰𝑡−𝑥) are calculated. By combining forward 
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and back ward probabilities the smoothing result is determined. A more 

detailed description ca be found in [3, 4, 5]. 

It is also possible to employ a second model. The second model can be 

useful, e.g., if it is specialized in the detection of certain manoeuvres or is 

less complex and thus can be inferred much faster. This could be the case if 

the second model considers variables that are not considered by the DIR 

model, since the DIR model only relies on the situational context as 

described in D2.4 and D2.6. The second model can be defined in the same 

framework as the DIR, thus it can be updated by the same parameter 

updating methods. However, additional rules might be needed to translate 

the inference results of the second model into the sample annotation for the 

DIR model. 

Distribution update methods 

Concerning the methods for updating the parameters of the DIR model, 

during the second cycle it was possible to update discrete variables with their 

corresponding distributions and continuous variables described by 

(multivariate) Gaussians. However, the DIR model also supports the usage of 

Gaussian Mixture Models (GMM) to approximate the underlying densities of 

continuous variables. Additionally the evaluation in D2.4 has shown that the 

GMMs are potentially better suited to approximate the densities of the 

continuous variables than single Gaussians. Thus, for the third cycle update 

methods for the GMMs used in the DIR models were implemented. Currently 

a batchwise fixed complexity update is performed similar to the approach 

described in [6] or sequential EM described in [7]. As already mentioned, a 

GMM can be used to approximate the underlying probability density function 
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of continuous data. The general assumption is that the data is generated by 

a set of Gaussian distributions. For offline learning, the parameters of the 

GMM are often estimated by using Expectation Maximization (EM). For the 

online parameter updating a single E-step and a special M-step are 

performed. First the E-step determines the responsibilities, which basically 

describe how strong a data point belongs one of the Gaussian distributions, 

of the newly arrived data points, based on the old GMMs parameters. 

Afterward, the M-step updates the old parameters of the Gaussian 

distributions with the newly arrived data but weighted with their 

corresponding responsibilities. This complements the verification of 

requirement R_EN4_model2.3, stating that the model must be able to 

update the parameters of the DIR model. 

2.2.3 Implementation 

For the integration into the TeamMate System Architecture and in the 

demonstrators, the component is exported as a dynamic library. For a 

simpler handling the functionality for the prediction of the spatial and 

temporal evolution of the traffic scene, the online risk assessment, and the 

driver intention recognition were put together into a single C++ Dynamically 

Linked Library. For integration into the ULM simulator, this library is wrapped 

in a DPU, which is a format for exchangeable modules of the SiLab simulation 

software used by ULM. For the integration into the VED demonstrator the 

library is wrapped into a RTmaps package, which allows a seamless 

integration into the RTMaps system environment used by VED. This 

complements the verification of requirement R_EN4_model2.8, stating that 

the module must be integrable in the demonstrators. 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<17/10/2019> Named Distribution Only 

Proj. No: 690705 

Page 22 of 78 

 

As already mentioned in D3.5 and defined in D5.1 “TeamMate System 

Architecture including open API for 2nd cycle” the Learning of intention from 

driver requires basically the same data as the DIR from WP2 these are: 

• the static environment mode (including a digital road map)l,  

• the dynamic environment model (including the state of the TeamMate 

vehicle and the state of all dynamic objects detected by the TeamMate 

vehicle) 

On an internal level, the enabler operates on the following input: 

• The current lane of the TeamMate car (𝑒𝑔𝑜_𝑙𝑎𝑛𝑒).  

• Features of other traffic objects dependent on the DIR model.  

• Features of the TeamMate car dependent on the DIR model, e.g., 

position, heading. 

In the case of a simulator demonstrator, the above mentioned inputs can be 

provided directly by the simulation software. In the case of the VED real 

vehicle demonstrator, the current lane and other features of the TeamMate 

are provided by the VED real vehicle internal sensors, e.g., a high precision 

GPS. The features of other traffic object could be provided by external 

sensors, like e.g., LIDARs, RADARs, or camera. This depends on the setup of 

the demonstrator vehicle. 

 

The Learning of intention from driver component general works as follows: 

- load provided initially offline learned DIR model 
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- each received data is put into a ring buffer which can hold several 

seconds of data 

o Evaluate 𝑒𝑔𝑜_𝑙𝑎𝑛𝑒𝑡−1! = 𝑒𝑔𝑜_𝑙𝑎𝑛𝑒𝑡 to check if a lane change 

happened. 

o If a lane change is detected forward-backward inference for 

buffered data is performed to label data. 

o If no lane change happened check for buffered data that is older 

than a certain threshold time 𝑡𝑡𝑟𝑒𝑠ℎ and set corresponding non 

lane change label.  

o If lane change was detected or the buffer is full 

▪ Transformed labelled buffer data to learning dataset type 

this can be used for several learning procedures. 

▪ For every distribution in the loaded DIR model run the 

corresponding parameter updating procedure.  

▪ Store the updated DIR model. 

▪ Inform DIR component about available update. 

Privacy Issues 

The current implementation for the learning of intention from driver solely 

updates the single initial DIR model. Since, this model only contains 

distribution parameters about driving data no personal data about the driver 

is stored. This complements the verification of requirement 

R_EN4_model2.7, stating that the online learning module must not safe any 

personal data in an unencrypted manner.  
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2.3 E5.1 - Online risk assessment (OFF + DLR + HMT) 

The purpose of online risk assessment in AutoMate is the calculation of safety 

corridors that quantify the safety of the current and near-future traffic 

situation according to a metric of risk. Such safety corridors can be used by 

the TeamMate car to assess and plan safe and feasible trajectories, leading 

to a set of algorithms that allow identifying safe and reasonable 

arrangements of the driving process. As described in deliverable D3.5, 

Enabler E5.1 is required to address the Peter scenario. However, regarding 

the close collaboration with partner VED, the design and development has 

also closely considered the Martha scenario. 

Importantly, the algorithms for constructing the safety corridor and 

trajectory assessment can be divided into two independent parts, 

corresponding to the handling of other traffic participants in the vicinity of 

the TeamMate vehicle and the lane boundaries. Within AutoMate, the 

realization of these two parts is provided by different partners, with 

individual plans for verification and validation. In the following, we will 

therefore distinguish between online risk assessment for dynamic objects like 

other traffic participants and the road boundaries. 

Concept, development, and implementation of the algorithm pipeline of the 

Online Risk Assessment have been entirely developed within the context of 

AutoMate. No part of the component has been inherited from previous 

projects nor addressed in any other European projects. 
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2.3.1 Concept 

2.3.1.1 Safety Corridor around Dynamic Objects 

The overall concept of the AutoMate enabler for online risk assessment has 

already been presented in detail in deliverable D3.5 “Concepts and 

algorithms incl. V&V results from 2nd cycle” and has not changed within the 

third cycle. For the sake of this document, we will however shortly 

recapitulate the definition of safety corridors in respect to other traffic 

participants: 

Let Δ denote a temporal step width in seconds and 𝜂𝑚𝑎𝑥 denote a desired 

number of prediction steps, resulting in a desired prediction horizon 𝜂𝑚𝑎𝑥Δ 

seconds, and 𝑉 = {𝑣1, … , 𝑣𝑛𝑉
} denote a set of 𝑛𝑉 objects (usually traffic 

participants) detected by the sensor platform of the TeamMate vehicle at 

some current time step 𝑡.  

As previously described in D3.3 “Concepts and algorithms incl. V&V results 

from 1st cycle”, the output of the online risk assessment at each time step 𝑡 

is defined as a set of so-called safety corridors  

𝒄𝑡:𝑡+𝜂𝑚𝑎𝑥Δ = (𝒄𝑡:𝑡+1Δ, 𝒄𝑡+1Δ:𝑡+2Δ, … , 𝒄𝑡+(𝜂𝑚𝑎𝑥−1)Δ:𝑡+𝜂𝑚𝑎𝑥Δ). 

For the sake of readability and, as envisioned for online risk assessment, we 

will silently assume that Δ = 1𝑠 and omit the addition of Δ in the following.  

Each safety corridor 𝒄𝑖:𝑖+1, 𝑡 ≤ 𝑖 < 𝜂𝑚𝑎𝑥 specifies a region over a temporal 

interval [𝑖, 𝑖 + 1] for which the probability of collision between the TeamMate 

vehicle and any object 𝑣 ∈ 𝑉 is below a user-defined threshold 𝛿. For this, 

each safety corridor 𝒄𝑖:𝑖+1 is defined as a set of polygons  
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𝒄𝑖:𝑖+1 = {𝑃1
𝑖:𝑖+1, … , 𝑃𝑛𝑉

𝑖:𝑖+1}, 

where each polygon 𝑃 is composed of a finite number of line segments, 

specified by a sequence of points 𝑃 = (𝐴1, … , 𝐴𝑘), where each 𝐴𝑗 ∈ 𝑃 is defined 

as a pair 𝐴𝑗 = (𝑥𝑗 , 𝑦𝑗) denoting the x- and y-coordinates in a Cartesian 

coordinate system. Within a safety corridor 𝒄𝑖:𝑖+1, each polygon 𝑃𝑗
𝑖:𝑖+1, 𝑗 =

1, … , 𝑛𝑉 denotes a polygonal line that excludes the region for which the 

probability of collision with the corresponding object is below some threshold 

𝛿𝑣 = 1 − √(1 − 𝛿)
𝑛𝑉

. As a result, the overall safety corridor 𝒄𝑖:𝑖+1 implies a 

continuous “safe area” for the temporal interval [𝑖, 𝑖 + 1], in which the 

probability of collision with any object is below 𝛿. The safety corridor can 

thus be used by the path planning algorithm to plan current and future 

trajectories within the temporal interval [𝑖, 𝑖 + 1].  

A visual example of a safety corridor is provided in Figure 1, which depicts a 

safety corridor 𝒄𝑡+1:𝑡+2 = {𝑃1
𝑡+1:𝑡+2, 𝑃2

𝑡+1:𝑡+2}, over a temporal interval [𝑡 + 1, 𝑡 + 2]. 

Combined with polylines associated with the lane boundaries, the safety 

corridor defines a safe area of collision-free travel, shown by the grey 

hachured area. We note that a safety corridor abstracts from the dimension 

of the TeamMate vehicle itself. 
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Figure 1: Exemplary visualization of a safety corridor for a temporal interval 

[𝒕 + 𝟏, 𝒕 + 𝟐]. 

To derive the safety corridors, the online risk assessment relies on a 

prediction of the temporal and spatial evolution of the traffic situation, 

provided by the Vehicle and Situation Modelling Module (for a detailed 

description, please refer to D2.4 “Sensor Platform and Models incl. V&V 

results from 2nd cycle” and D2.6 “Sensor Platform and Models incl. V&V 

results from 3rd cycle”).  

2.3.1.2 Safety Corridor between Road Boundaries 

During the first cycle (cf. deliverable D3.3) we presented and described a 

novel approach for extracting the safety boundary corridors between road 

boundaries. In the second cycle (cf. deliverable D3.5), we considered 

uncertainty in the TeamMate vehicle position to extract the risk assessed 

safety boundary corridor. This approach is visualised with the blue and red 

polylines in Figure 2 and Figure 3.  

In deliverable D3.5, we had described that the system uses the OpenDrive 

format Digital Map for parsing localization information, but during the third 

cycle, a new interface has to be developed in the context of the online risk 

assessment module to access the proprietary map format from Vedecom. 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<17/10/2019> Named Distribution Only 

Proj. No: 690705 

Page 28 of 78 

 

Nevertheless, the approach and concept for extracting the safety corridor 

between road boundaries remains the same as we have described in the 

previous deliverables.  

 

Figure 2: Example of a generated safety corridor assuming that the ego-pose 

uncertainty is ±0.25m. 

The module, first maps the TeamMate vehicle pose and position into map 

coordinates and extract the required ego lane and lane marker information of 

those lanes that are associated to the ego lane in the driving direction. Based 

on the obtained lane marking information, the possible boundary corridor is 

extracted. Addressing requirement R_EN5_alg1.1, the risk of the safety 

boundary is assessed by taking into account the uncertainty in the 



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<17/10/2019> Named Distribution Only 

Proj. No: 690705 

Page 29 of 78 

 

TeamMate’s position and the requested degree of “Probability of Collision” 

(POC).  

As you see from Figure 2 and Figure 3, the true boundary corridor (blue 

polyline) is shifted with respect to the quantile 𝑧𝛿𝑉
 and 𝑧1−𝛿𝑉

 computed with 

the help of requested POC and uncertainty in position of the TeamMate 

vehicle. At the end, the shifted polylines that are closest to the vehicle (red 

polylines) are considered for providing the risk assessed boundary safety 

corridor ensuring the requested POC threshold 𝛿𝑉 is fulfilled.  

 

Figure 3: Example of a generated safety corridor assuming that the ego-pose 

uncertainty is ±1m. 
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The lane markings from the map do not match the one in the camera image 

because the map’s representation is in a 2 dimensional space. The missing 

height information into the map leads to a projection error into the image 

plane. For simplification, we used the height of the camera above the road as 

the height of the map data. 

2.3.2 Improvements 

2.3.2.1 Safety Corridor Around Dynamic Objects 

The qualitative performance of the online risk assessment is primarily 

determined by the quality of the predicted spatial and temporal evolution of 

the traffic scene. As such, the primary focus for improvements in the third 

cycle was put on the improvement of Vehicle and Situation Modelling Module 

(c.f., deliverable D2.6 “Sensor Platform and Models incl. V&V results from 3rd 

cycle”). Exclusively for only risk assessment, we focused on the functionality 

of trajectory assessment and improving the computational efficiency of the 

online risk assessment, which shall be described in the following. 

2.3.2.1.1 Trajectory Assessment 

If at some time 𝑡, the online risk assessment has successfully prepared the 

set of safety corridors 𝒄𝑡:𝑡+𝜂𝑚𝑎𝑥Δ = (𝒄𝑡:𝑡+1Δ, 𝒄𝑡+Δ:𝑡+2Δ, … , 𝒄𝑡+(𝜂𝑚𝑎𝑥−1)Δ:𝑡+𝜂𝑚𝑎𝑥Δ) for 

some threshold probability of collision 𝛿, these can be used for trajectory 

assessment, i.e. to decide whether a trajectory planned by the trajectory 

planner of the TeamMate vehicle is safe or unsafe in respect to other traffic 

participants. 

The input for trajectory assessment is a trajectory 𝑅𝑡 defined as a sequence 

of 𝑛𝑅 points 
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𝑅𝑡 = (𝑟1, … , 𝑟𝑛𝑅
), 

where each point 𝑟𝑖 = (𝑡𝑖, 𝑥𝑖, 𝑦𝑖, 𝜃𝑖) specifies the planned 𝑥𝑖 and 𝑦𝑖 coordinates of 

the center of the bounding box of the TeamMate vehicle and its absolute yaw 

angle 𝜃𝑖 at some future point in time 𝑡𝑖. For a reasonable assessment, we 

require that the difference in time between two successive points 𝑟𝑖 and 𝑟𝑖+1 

is below 0.5Δ, i.e., 𝑡𝑖 − 𝑡𝑖 ≤ 0.5Δ, where such a requirement is not met, we use 

linear interpolation to create a trajectory that meets the requirement. 

The actual trajectory assessment is then performed as follows: for each point 

𝑟𝑖 = (𝑡𝑖, 𝑥𝑖 , 𝑦𝑖, 𝜃𝑖) in the trajectory, we use the specified coordinates and yaw 

angle and the dimension of the TeamMate vehicle to derive the corners of 

the TeamMate vehicle’s bounding box. Based on the timestamp 𝑡𝑖, we then 

search the safety corridor 𝒄𝑡+jΔ:𝑡+(𝑗+1)Δ for which 𝑡𝑖 ∈ [𝑡 + jΔ, 𝑡 + (𝑗 + 1)Δ]. For 

each polygon within the safety corridor 𝒄𝑡+jΔ:𝑡+(𝑗+1)Δ, we then check whether 

any corner of the TeamMate vehicle is located within the polygon. If true, we 

conclude that the trajectory is unsafe for the desired threshold of the 

maximum probability of collision 𝛿. If false for the complete trajectory, we 

conclude that the trajectory is safe. The assessment can then be used by the 

trajectory planner to either trigger the execution of the trajectory or repeat 

the planning process. 

A visual example trajectory assessment is provided in Figure 4, depicting the 

assessment of a trajectory consisting of 𝑛𝑅 = 4 points, assumed to fall within 

the temporal interval [𝑡 + 1, 𝑡 + 2]. Green circles depict that the corner of the 

bounding box lie outside, red circles depict that the corner lie inside of the 

safety corridor, rendering the overall trajectory as unsafe. 
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Figure 4: Exemplary visualization of trajectory assessment for a temporal 

interval [𝒕 + 𝟏, 𝒕 + 𝟐]. 

2.3.2.1.2 Computational Efficiency 

As the online risk assessment is used to assess the planned trajectories of 

the TeamMate vehicle, it must comply with strict requirements concerning 

the required computation time and resources for the construction of safety 

corridors and trajectory assessment. In this section, we will provide 

asymptotic boundaries on the computational complexity of online risk 

assessment, which have been used to improve the overall computational 

efficiency during the third cycle. 

To assess the computational complexity of the construction of safety 

corridors for other traffic participants, we will shortly recap the construction 

process as described in deliverable D3.5 “Concepts and algorithms incl. V&V 

results from 2nd cycle”.  

As a reminder, let Δ denote a temporal step width in seconds and 𝜂𝑚𝑎𝑥 

denote a desired number of prediction steps, resulting in a desired prediction 

horizon 𝜂𝑚𝑎𝑥Δ seconds, and let 𝑉 = {𝑣1, … , 𝑣𝑛𝑉
} denote a set of 𝑛𝑉 objects 

(usually traffic participants) detected by the sensor platform of the 

TeamMate vehicle at some current time step 𝑡. As a prerequisite for the 
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construction of the safety corridors, a prediction of the spatial and temporal 

evolution of the traffic scene provides as input a sequence of multivariate 

Gaussian distributions over the Cartesian coordinates of the centre and the 

orientation of each object 𝑣 ∈ 𝑉 for the prediction horizon, given the available 

sensor information 𝒐1:𝑡 obtained by the TeamMate vehicle thus far: 

𝑝(𝑋𝑣
𝑡+Δ𝑖, 𝑌𝑣

𝑡+Δ𝑖, Θ𝑣
𝑡+Δ𝑖|𝒐1:𝑡), 𝑖 = 0, 1, … , 𝜂𝑚𝑎𝑥. 

Given some threshold 𝛿 for the maximal probability of collision, determining 

the internal thresholds for each 𝑣 ∈ 𝑉 as 𝛿𝑣 = 1 − √(1 − 𝛿)
𝑛𝑉

, the construction of 

the safety corridor is then performed as follows:  

1. For each 𝑣 ∈ 𝑉 and each 𝑖 ∈ {0, 1, … , 𝜂𝑚𝑎𝑥}, using available sensor 

information providing the length and width of the object, the 

multivariate Gaussian 𝑝(𝑋𝑣
𝑡+Δ𝑖, 𝑌𝑣

𝑡+Δ𝑖, Θ𝑣
𝑡+Δ𝑖|𝒐1:𝑡) is converted into each one 

polygon for each corner of the bounding box of the object, in the 

following referred to as a corner polygons, enclosing (1 − 𝛿𝑣) ⋅ 100% of 

the probability mass for the location of the respected corner.  

2. The resulting four corner polygons are then combined in a single 

polygon, referred to as a coverage polygon, by deriving the complex 

hull of the four corner polygons. Once constructed, each coverage 

polygon obtained for some multivariate Gaussian 𝑝(𝑋𝑣
𝑡+Δ𝑖, 𝑌𝑣

𝑡+Δ𝑖 , Θ𝑣
𝑡+Δ𝑖|𝒐1:𝑡) 

can be interpreted as enclosing (1 − 𝛿𝑣) ⋅ 100% of the probability mass of 

the location of the complete vehicle.  

3. Finally, each two consecutive coverage polygons obtained from the 

multivariate Gaussians 𝑝(𝑋𝑣
𝑡+Δ𝑖, 𝑌𝑣

𝑡+Δ𝑖, Θ𝑣
𝑡+Δ𝑖|𝒐1:𝑡) and 
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𝑝(𝑋𝑣
𝑡+Δ(𝑖+1)

, 𝑌𝑣
𝑡+Δ(𝑖+1)

, Θ𝑣
𝑡+Δ(𝑖+1)

|𝒐1:𝑡) are combined into a single polygon 

𝑃𝑣
𝑡+Δ𝑖:𝑡+Δ(𝑖+1)

 by deriving the complex hull of the two coverage polygons.  

Given these steps, we can attempt to provide the approximative boundaries 

of the computational complexity.  

1. Let each corner polygon be composed of a number of 𝑛𝑃 vertices, the 

derivation of a single corner polygon can be performed in linear time 

complexity, 𝒪(𝑛𝑃). Under the assumption of 𝑛𝑉 considered objects and 

a maximum number of prediction steps 𝜂𝑚𝑎𝑥, this step has to be 

performed 4𝑛𝑣(𝜂𝑚𝑎𝑥 + 1) times in total.  

For the construction of the convex hulls in step 2 and 3, we rely on the so 

called “Andrew’s monotone chain convex hull algorithm”. Let 𝑛 denote the 

number of points for which the convex hull shall be constructed. The 

algorithm first sorts all 𝑛 points lexicographically, with a quasilinear time 

complexity of 𝒪(𝑛 log 𝑛), and then constructs an upper and lower hull of the 

points in 𝒪(𝑛) time, resulting in an overall quasilinear time complexity of 

𝒪(𝑛 log 𝑛).  

2. For deriving a single coverage polygon, we need to construct a convex 

hull from 4𝑛𝑃 vertices. Assuming 𝑛𝑉 considered objects and a maximum 

number of prediction steps 𝜂𝑚𝑎𝑥, this step must be performed 𝑛𝑣(𝜂𝑚𝑎𝑥 +

1) times in total.  

3. Each two consecutive coverage polygons will then be combined into a 

single polygon using the convex hull algorithm. In the worst case, each 

coverage polygon will consist of 4𝑛𝑃 vertices, in practice however, 

resulting coverage polygon will average on roughly 𝑛𝑃 + 4 vertices. 
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Assuming 𝑛𝑉 considered objects and a maximum number of prediction 

steps 𝜂𝑚𝑎𝑥, this step must be performed 𝑛𝑣𝜂𝑚𝑎𝑥 times in total.  

As a result, the computational complexity of the construction of the safety 

corridors is dominated by the quasilinear time complexity of the convex hull 

algorithm, which has to be performed 2𝑛𝑣𝜂𝑚𝑎𝑥 + 𝑛𝑣 times in total. As such, the 

computational complexity grows quasilinear with the number of vertices 𝑛𝑃 

per corner polygon, but only linear with the number of objects 𝑛𝑣 considered 

and the maximal number of prediction steps 𝜂𝑚𝑎𝑥, which easily allows for 

specific calibrations based on the requirements in a current situation. 

Assuming that the maximum number of prediction steps 𝜂𝑚𝑎𝑥 have been 

chosen thoughtfully and that all 𝑛𝑉 considered objects are crucial, potential 

optimizations are limited to a reduction of the number of vertices 𝑛𝑃 per 

corner polygon. The number of vertices 𝑛𝑃 per corner polygon provide a 

trade-off between computational complexity and the correctness of the 

resulting corner polygon in respect to the underlying Gaussian. More 

specifically, the error induced by approximating the area of the ellipse by a 

polygon can easily be obtained from the reference circle. Here we have that 

the area of circle with 𝑟 = 1 is given by 𝐴 = 𝜋𝑟2, while the area of a polygon 

with 𝑛 equidistant vertices along the arc is given by: 

𝐴 =
1

2
𝑛𝑟2 sin

360°

𝑛
. 

During the second cycle, we opted for a number of 𝑛𝑃 = 100 vertices per 

corner polygon to obtain an approximation error of < 0.1%. To improve the 

overall computational performance, we tested a reduction of the number of 

vertices down to 𝑛𝑃 = 10 vertices per corner polygon. Although this 
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introduces a substantial approximation error of 6.45% for each individual 

corner polygon, it turns out that the approximation error of the whole 

temporal polygon in practice shrinks with the chosen temporal step width Δ. 

To assess the resulting gain in computational performance and potential loss 

in quality, we performed validations for both 𝑛𝑃 = 100 and 𝑛𝑃 = 10, which are 

reported in Section 3.3.1. 

For trajectory assessment, the computational complexity is dominated by the 

necessary assessments of whether a corner of the bounding box of the 

TeamMate vehicle is located within the polygons comprising the safety 

corridors, for which we rely on a simple line crossing algorithm with linear 

time complexity based on the number 𝑛𝑃 of vertices in the polygon, 𝒪(𝑛𝑃). 

Now, let 𝑛𝑅 denote the number of points in the trajectory and 𝑛𝑉 denote the 

number of considered objects in the vicinity of the TeamMate vehicle. 

Morever, let’s assume that the number 𝑛𝑃 of vertices in each polygon is 

constant for simplicity, as each point in the trajectory results in four required 

assessments (one for each corner of the bounding box) of exactly one 

polygon for each considered object (ignoring the possibility that a timestamp 

is located on the boundaries of two successive temporal intervals). In such a 

way, trajectory assessment requires 4𝑛𝑅𝑛𝑉 of such assessments in the worst 

case (obviously, trajectory assessment can be aborted early once the 

trajectory has been classified as unsafe). 

Assuming that both all 𝑛𝑅 points on the trajectory and all 𝑛𝑉 considered 

objects are crucial, we once again need to reduce the number of vertices 𝑛𝑃 

for reducing the computational complexity of trajectory assessment. 
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2.3.2.2 Safety Corridor between Road Boundaries 

During the third cycle, we have focused on extending the module to perform 

online risk assessment for planned trajectories. Figure 5 provides an 

overview how the trajectory assessment is performed. The risk assessed 

safety boundary corridor between road boundaries is used to assess the 

planned trajectory. Those planned trajectories that do not fall within the left 

and right boundary points of the safety corridor are classified as unsafe 

trajectories, and those that are within the limits of the left and right safety 

corridor boundaries are classified as safe trajectories. The surrogate safety 

measure “Time To Collision” (TTC) is appended for those trajectories that are 

classified as unsafe.  
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Figure 5: Example how the online risk assessment of planned trajectory is 

performed Implementation. 

2.3.3 Implementation 

2.3.3.1 Safety Corridor around Dynamic Objects 

Concerning the implementation, online risk assessment in respect to other 

traffic participants has been integrated together with the functionality for the 

prediction of the spatial and temporal evolution of the traffic scene, the 

driver intention recognition, and the online learning into a single C++ 

Dynamically Linked Library. Within the second and third cycle, this DLL was 

embedded into functional modules for the simulation environment SILAB, 
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used by the ULM simulator demonstrator, and the third-party software 

RTMaps, used by the VED real vehicle demonstrator, enabling the utilization 

of these functionality in the resp. demonstrators.  

The required input of the overall module conforms to the TeamMate system 

architecture and consists of  

• the static environment model,  

• the dynamic environment model,  

• and the planned trajectory,  

as defined in deliverable D5.1 “TeamMate System Architecture including 

open API for 2nd cycle”. On an internal level, the online risk assessment in 

respect to other traffic participants purely operates on the following input: 

• A prediction of the spatial and temporal evolution of the traffic scene in 

terms of a sequence of multivariate Gaussian distributions over the 

Cartesian coordinates of the centre and the orientation of each object 

𝑣 ∈ 𝑉 for the complete prediction horizon, given the available sensor 

information 𝒐1:𝑡 obtained by the TeamMate vehicle thus far: 

𝑝(𝑋𝑣
𝑡+Δ𝑖, 𝑌𝑣

𝑡+Δ𝑖, Θ𝑣
𝑡+Δ𝑖|𝒐1:𝑡), 𝑖 = 0, 1, … , 𝜂𝑚𝑎𝑥. Within AutoMate, this input is 

readily provided by the Vehicle and Situation Modelling Module 

developed in WP2. 

• The dimension (i.e. width and length) of each considered object 𝑣 ∈ 𝑉. 

In the case of simulator demonstrators, these can be provided directly 

by the simulation software, in the case of the VED real vehicle 

demonstrator, this are provided as a common output of laser scanners. 
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• For trajectory assessment, a trajectory to be assessed. Within 

AutoMate, this input is readily provided by the algorithms for trajectory 

planning. 

As apparent from this list, the module for online risk assessment does not 

process any personal or private data. Furthermore, the online risk 

assessment does not make use of the state of the driver, e.g., intention, 

distraction, or drowsiness. This can be justified as follows: In its current 

implementation, the online risk assessment is envisioned as providing 

relevant information to the TeamMate vehicle concerning the potential risk or 

safety of trajectories planned by the trajectory planning modules. As these 

are intended to be performed autonomously, without intervention of the 

driver, online risk assessment operates independently of the driver. 

2.3.3.2 Safety Corridor between Road Boundaries 

Integration of components into the TeamMate System Architecture is 

planned in RTMaps environment. As part of the fulfillment of requirement 

R_EN5_alg1.4, the component is exported as 32-bit windows DLL with 

necessary callback function. This approach allows a seamless integration into 

the RTMaps system environment. In a previous corresponding deliverable 

D3.5 we presented that the prediction of the spatial and temporal evolution 

of the traffic scene and online risk assessment where coupled as single 

module, but due to the complexity and resource overheads, this particular 

submodule of online risk assessment is exported as a DLL with callback 

function.  

#ifdef ONLINERISKASSESMENTDLL_EXPORTS 

#define ONLINERISKASSESMENTDLL_API __declspec(dllexport) 
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#else 

#define ONLINERISKASSESMENTDLL_API __declspec(dllimport) 

#endif 

 

#pragma once  

 

namespace VEDECOM 

{ 

 enum TRAJECTORYASSESMENT{SAFE=100,UNSAFE=50,NOTCOMPUTED=-1}; 

 enum ISSAFETYBOUNDARYVALID{NOTVALID=-1, VALID=1}; 

 class CallBackFunc 

 { 

 public: 

  //------callback functions that are exported---------// 

  static ONLINERISKASSESMENTDLL_API void checkCallBack(); 

 

  static ONLINERISKASSESMENTDLL_API bool 

WraperfuncLoadMapEnvironment(const char*  _pathToDigitalPath, const int & 

n_RaodpointsInMap); 

  /* One time CallBackFunc for loading Digital Map environment*/ 

   

  static ONLINERISKASSESMENTDLL_API int  

WraperfuncGetSafeBoundaryCorridor(double* _safetyCorridorLeftPnts_io, double* 

_safetyCorridorRightPnts_io,  int& _nbPnts_shiftedleft,  int& 

_nbPnts_shiftedright, const double* _egoPositionUTM_xy, const double* 

_egoUncertainity_xy, float POC = 1.0); 

  /* For Safe Boundary Extraction Between Road Boundaries */ 

   

  static ONLINERISKASSESMENTDLL_API bool 

assesTheRiskOfPlannedTrajectory(const double* trajectoryPntsinUTM,const int& 

_nofPnts, const float& vehilceVelocity, float& 

TTC,VEDECOM::TRAJECTORYASSESMENT& assesmentResults); 

  /*call to the function "assesTheRiskOfPlannedTrahjectory" should 

always be follwed by "WraperfuncGetSafeBoundaryCorridor" function; 

   1. The function returns enum type (TRAJECTORYASSESMENT) whether 

the Trajectory under test is safe or unsafe 

   2. Other output "float& TTC", is the Time-To-Collision for those 

trajectory that are unsafe 

   3. For safe Trajectories the TTC is not computed (TTC is only 

compute for unsafe trajectory)*/ 

 }; 

} 

 

The above code illustrates the callback functions that are exposed by the 

DLLs. As an input, the component requires a highly accurate Digital Map of 
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the road network, along with vehicle absolute velocity and position with 

involved uncertainties. 

Assuming the provided sensor data is accurate, the component is intended to 

work as follows:  

- Map data is initialized only once when the system is first booted. At 

boot time, the module loads the map data and represents it as a 

meaningful data structure. During subsequent calls to extract the 

safety corridor, the map which has been loaded into the the static 

memory of the component is used. 

- Every time the function is called to provide the risk assessed safety 

corridor for a given POC, the following steps are executed: The 

component first matches the TeamMate vehicle orientation and position 

to the map. Then it extracts the boundary corridor within the vicinity of 

the vehicle position based on the adjacent lane marking information to 

the ego lane. To provide the risk assessed safety corridor with 

requested POC, the component uses the vehicle position as the mean 

μ, and uncertainty of the position as parameters of normal distribution 

function. Using the concept of a CDF (cumulative distribution function) 

the quantile for the requested POC is computed which in turn provides 

the basis for translating the boundary lanes. Those lines that are close 

inwards to the TeamMate vehicle are considered as the limitations for 

the vehicle. 
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3 Validation of WP3 enablers 

3.1 E4.1 - Planning and execution of safe manoeuvre (ULM) 

To validate the new concept of the trajectory planner we use the value of the 

KKT condition that describes how optimal the solution of the optimization 

problem is and the response time, which is the cycle time (namely the time 

needed to evaluate on trajectory).  

3.1.1 Dataset for validation 

To validate the planner, a simulation environment is written within MATLAB 

SW tool. Therefore, the planner is embedded in a “mex” function file, a 

possibility to directly call C++ coded functions within matlab.  

The simulation environment uses the centre lines of the digital map of Ulm to 

describe the road infrastructure. Figure 6 shows the lane on which the 

evaluation is done. 
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Figure 6: Track used for evaluation 

 

3.1.2 Results 

To obtain expressive results the algorithm was called 100 times. 

The averaged computation times together with the averaged value of the 

KKT conditions is shown in the table below. The solver used is WORHP [8]. 

The number of trajectory support points used for discretization is indicated 

by N. The time needed for computation is 𝑡 and the values of the KKT 

condition is indicated by 𝐾𝐾𝑇. The temporal horizon for each simulation is set 

to 𝑇 = 2.95𝑠 

Runtime Performance 
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Table 1: Runtime performance and KKT values for different number of 

trajectory support points 

N 60 100 200 300 

t[ms]  83.82 90.67 110.24 130.17 

KKT <1.67e-7 <3.93e-5 <9.21e-4 <9.69e-4 

 

In Ulm 60 support points of the trajectory are used, thus the method is fast 

enough to run on real cars. In addition the KKT conditions take always small 

values < 1e-3, therefore the problem can be solved well. This complements 

the validation of R_EN4_model1.10  and R_EN4_model1.11. 

Details of implementation and evaluation as well are listed in the following 

table. 

 

Table 2: Hardware details and uses software libraries 

CPU i7-6700K, 4GHz 

RAM 32GB 

Language C++ 

External Software Eigen, WORHP 
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3.1.3 State of the Art 

Compared to many existing state of the art techniques the planner directly 

incorporates driver models into planning to generate interaction aware 

behaviour. Further details are to find in [2]. 
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3.2 E4.2 - Learning of intention from driver (HMT) 

According to the validation plan described in D3.6 “Metrics and plan for V&V 

of the concepts and algorithms in the 3rd cycle”, the Learning of intention 

from driver is validated by considering the performance of the updated 

model on a test dataset 𝐷𝑇𝑒𝑠𝑡, in comparison to an initial model, to assess 

how well the recalibrated driver model recognizes the intentions of the 

current individual driver. The initial model was trained on a data set 𝐷𝐼𝑛𝑖𝑡 

while the recalibration is done by using a further dataset 𝐷𝑁𝑒𝑤. The datasets 

𝐷𝑇𝑒𝑠𝑡 and 𝐷𝑁𝑒𝑤 origin from one and the same driver, while 𝐷𝐼𝑛𝑖𝑡 may contain 

data of multiple drivers. For each utilization of the models on the test set 

𝐷𝑇𝑒𝑠𝑡 a binary confusion matrix is created and recall (REC), False positive rate 

(FPR), precision (PRE), accuracy (ACC), and F1-score are derived. 

In addition, as described in D3.6, to evaluate the update methods for the 

GMMs without the influence of the online sample generation the initial model 

is updated with 𝐷𝑁𝑒𝑤 by using the ground truth. A second model is learned 

offline by using 𝐷𝐼𝑛𝑖𝑡 and 𝐷𝑁𝑒𝑤. The updated model and the new offline 

learned model are evaluated on 𝐷𝑇𝑒𝑠𝑡 and compared in terms of the 

parameters mentioned above. 

3.2.1 Dataset for Validation 

The mentioned data sets 𝐷𝑇𝑒𝑠𝑡, 𝐷𝑇𝑟𝑎𝑖𝑛, and 𝐷𝑇𝑟𝑎𝑖𝑛_𝑂𝑛𝑙𝑖𝑛𝑒 were obtained from the 

simulator study conducted for training and evaluation of the DIR model. For 

a detailed description of the experiment and the gathered data, please see 

D2.4 “Sensor Platform and Models incl. V&V results from 2nd cycle” and D2.5 
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“Metrics and Experiments for V & V of the driver, vehicle and situation models in the 

3rd cycle”. 

3.2.2 Results 

Table 3 shows the validation results for the updating methods for DIR models 

with distributions approximated by Gaussian mixture models. 𝑀𝐺𝑀𝑀𝑖𝑛𝑖𝑡 is the 

initial model which was trained only with a dataset 𝐷𝑇𝑟𝑎𝑖𝑛. The training 

dataset contains in this case data of about 40 minutes of driving on a rural 

road with 142918 samples. 𝑀𝐺𝑀𝑀𝑜𝑓𝑓 is an offline learned DIR model which 

was trained with 𝐷𝑇𝑟𝑎𝑖𝑛  and 𝐷𝑇𝑟𝑎𝑖𝑛_𝑂𝑛𝑙𝑖𝑛𝑒. The data set 𝐷𝑇𝑟𝑎𝑖𝑛_𝑂𝑛𝑙𝑖𝑛𝑒 contains 

167522 samples covering about 46 minutes of driving. 𝑀𝐺𝑀𝑀𝑢𝑝𝑑 is the 

resulting model of updating 𝑀𝐺𝑀𝑀𝑖𝑛𝑖𝑡 with 𝐷𝑇𝑟𝑎𝑖𝑛_𝑂𝑛𝑙𝑖𝑛𝑒 and the contained 

annotation using the updating methods for GMM described in Section 2.2.2. 

Table 3: Performance of an initial model, an offline “updated”, and the 

updated model for the evaluation on 𝑫𝑻𝒆𝒔𝒕 

Model REC FPR PRE ACC F1-score 

𝑴𝑮𝑴𝑴𝒊𝒏𝒊𝒕 0.658 0.228 0.100 0.767 0.174 

𝑴𝑮𝑴𝑴𝒐𝒇𝒇 0.133 0.032 0.139 0.937 0.136 

𝑴𝑮𝑴𝑴𝒖𝒑𝒅 0.149 0.039 0.127 0.931 0.137 

The results from the table show that except for the recall and the F1-score   

𝑀𝐺𝑀𝑀𝑜𝑓𝑓 and 𝑀𝐺𝑀𝑀𝑢𝑝𝑑 outperform the initial model on the data set 𝐷𝑇𝑒𝑠𝑡 . 

This could be expected, since the initial model had not seen data from the 

driver whose data is contained in 𝐷𝑇𝑒𝑠𝑡, while the other models both have 
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seen 𝐷𝑇𝑟𝑎𝑖𝑛_𝑂𝑛𝑙𝑖𝑛𝑒 which contains data from the same driver as in 𝐷𝑇𝑒𝑠𝑡. 

Nevertheless the data shows that the updated model 𝑀𝐺𝑀𝑀𝑢𝑝𝑑 nearly shows 

the same performance as 𝑀𝐺𝑀𝑀𝑜𝑓𝑓. This is an indicator that the GMMs in both 

models are very similar and the fixed complexity update for the GMMs is 

working properly.  

Table 4 shows the validation results for the evaluation of the initial model  

𝑀𝑖𝑛𝑖𝑡 and the updated model 𝑀𝑢𝑝𝑑 on the dataset 𝐷𝑇𝑒𝑠𝑡. For the updating 

procedure the annotations in the update training data 𝐷𝑇𝑟𝑎𝑖𝑛_𝑂𝑛𝑙𝑖𝑛𝑒 were 

ignored. Instead the online sample generation described in Section 2.2.2 was 

utilized.  

Table 4: Performance of initial and updated model on test data set 

Model REC FPR PRE ACC F1-score 

𝑴𝒊𝒏𝒊𝒕 0.844 0.197 0.055 0.804 0.103 

𝑴𝒖𝒑𝒅 0.292 0.068 0.142 0.908 0.191 

 

The ACC and PRE values of the updated model increase in comparison to the 

initial model while the FPR value reduces, which indicates a better 

performance of the updated model. Therefore, the updated model 

outperforms the initial model on the test set in terms of indicating more 

seldom a lane change when there is no intention to perform one, which 

results in lesser false alarms than the initial model. The results validate the 

requirements R_EN4_model2.2 stating that the model must be able to learn 
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(online) the driver’s preferred decisions in specific situations. While here the 

preferred decision is interpreted as the intention to perform a lane change. 

Runtime Performance 

Considering the validation of the runtime performance of this enabler an 

empirical approach is used. The real running time of the Learning of intention 

from driver is measured on an exemplary system. This running time depends 

on: 

• the model which has to be updated;  

• the size of the batch which is processed for updating; 

• the amount and type of the distributions that are affected by the data 

contained in the updating batch. 

For example, the initial Gaussian model 𝑴𝒊𝒏𝒊𝒕 has six categorial distributions 

and 25 multivariate Gaussian distributions which are subject to updates, 

while the complex model 𝑴𝑮𝑴𝑴𝒊𝒏𝒊𝒕 contains 10 categorial distributions and 

eight distributions with Gaussian mixture models.  

On a system equipped with an Intel i5-3570 CPU @ 3.4 GHz the average 

running time is 88ms for 𝑴𝒊𝒏𝒊𝒕 and 76ms for 𝑴𝑮𝑴𝑴𝒊𝒏𝒊𝒕. This validates 

requirement R_EN4_model2.9 stating that the update procedure must be 

sufficiently fast and the updating time is below 500ms. It has to be noticed 

that this refers to the process of sample generation, data preparation and 

actual updating of the parameters for a mean amount of about 980 samples. 

About 80% of the time is consumed during the sample generation, since the 

forward-backward inference is quite complex. However, for further 
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developments this point for optimizations. For example, the forward and the 

backward could be parallelized.  

3.2.3 State of the Art 

In the automotive domain there are a few approaches which apply online 

learning to driver models, none of them employs dynamic Bayesian Models.  

In [9] a manoeuvre forecast for other road users at intersection based on a 

Bernoulli-Gaussian Mixture Model is described. An update of the model is 

realized by means of sequential EM. In contrast to our approach, updating of 

the model while driving and an online sample generation are not covered. 

The approach presented in [10] employs fuzzy Case-Based Reasoning and 

Situation-Operator modelling to individualize and learn situation recognition 

for lane-changes. In contrast to our approach, the initially offline learned 

models are already individualized for one driver and are then trained further 

online. The case base might also grow over time leading to an increased time 

to check for known cases. In [11] GMMs trained via EM are used to model 

lane-changes and car following behaviour. In order to make the model 

responsive to individual drivers and behaviour changes the EM training is 

started again whenever a sufficient amount of new samples is available. 

Since the retraining consumes many resources the GMMs are retrained only 

on a certain batch of recent data. In contrast to our approach this leads to 

the effect that the model only represents recent driving data and ignores 

older experiences. 
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3.3 E5.1 - Online risk assessment (OFF + DLR + HMT) 

3.3.1 Safety Corridor around Dynamic Objects 

Following the plans presented in deliverable D3.6 “Metrics and plan for V&V 

of the concepts and algorithms in the 3rd cycle”, validation of online risk 

assessment in respect to other traffic participants was performed using a set 

of independent test data, representing ground truth time-series of traffic 

situations. 

To recapitalize the overall validation process and metric used, let 𝐷𝑇𝑒𝑠𝑡 denote 

the test data, composed by a number of 𝑚 trials, where each trial 𝑗, 𝑗 =

1, … , 𝑚, is a time-series consisting of a number of 𝑛𝑗 data samples 𝑑𝑗
𝑘, 𝑘 =

1, … , 𝑛𝑗, describing the ground truth traffic situation at time 𝑘.  

For each sample 𝑑𝑗
𝑘, and each object 𝑣 considered for online risk assessment, 

we used the Vehicle and Situation Modelling Module to predict a sequence of 

(the current and) future states 𝑝(𝑋𝑗,𝑣
𝑘+Δ𝑖, 𝑌𝑗,𝑣

𝑘+Δ𝑖, Θ𝑗,𝑣
𝑘+Δ𝑖|𝒐1:𝑘), 𝑖 = 0, … , 𝜂𝑚𝑎𝑥, and 

derived the region that included the expected position of the vehicle with a 

probability of (1 − 𝛿𝑣), choosing 𝛿𝑣 such that 𝛿𝑣 = 1 − √(1 − 𝛿)
𝑛𝑽

.  

Based on this prediction, the online risk assessment component was used to 

calculate a corresponding set of safety corridors 𝒄𝑘:𝑘+𝜂𝑚𝑎𝑥Δ =

(𝒄𝑘:𝑘+Δ, 𝒄𝑘+Δ:𝑘+2Δ, … , 𝒄𝑘+(𝜂𝑚𝑎𝑥−1)Δ:𝑘+𝜂𝑚𝑎𝑥Δ). For each safety corridor 𝒄𝑖:𝑖+1, 𝑘 ≤ 𝑖 <

𝜂𝑚𝑎𝑥, we then used the current and subsequent samples in the trial 

corresponding to the resp. temporal interval [𝑖, 𝑖 + 1] and checked for each 

such sample, whether any object 𝑣 ∈ 𝑉 penetrated the implied safety region 
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defined by the conjunction of the polygons. Denoting such an occurrence as 

a failure and resp. as a success otherwise, we used the metric  

𝐶𝑅𝛿
𝑖 =

#𝑠

#𝑠 + #𝑓
, 

representing the ratio of successes #𝑠 and the sum of successes #𝑠 and 

failures #𝑓, in the following referred to as the correct classification rate, for a 

prediction horizon 𝑖 and a specific level of 𝛿 for assessing the quality of online 

risk assessment. 

As mentioned in deliverable D3.6 “Metrics and plan for V&V of the concepts 

and algorithms in the 3rd cycle”, the metric has the undesired drawback that 

the correct classification rate can be arbitrarily increased by (artificially) 

increasing the area in which another traffic participant is likely to be located 

for a specific prediction interval, therefore decreasing the size of the overall 

safe area. To account for this drawback, we therefore calculated the mean 

area �̅�𝛿
𝑖  of each safety corridor for a prediction horizon 𝑖 and a specific level 

of 𝛿 as a supplementary measure for assessing the quality of online risk 

assessment. 

Repeating the validation process of the second cycle for comparison, we 

computed these metrics using a temporal step width Δ = 1𝑠 and a maximal 

number of prediction steps 𝜂𝑚𝑎𝑥 = 10, resulting in a prediction horizon of 

𝜂𝑚𝑎𝑥Δ = 10𝑠, for five different levels of 𝛿, 𝛿0.5 = 0.5, 𝛿0.25 = 0.25, 𝛿0.1 = 0.1, 𝛿0.05 =

0.05, and 𝛿0.01 = 0.01, expecting a ratio of 1 − 𝛿 for the correct classification 

respectively. As requirement R_EN5_alg1.5 requires a correct rate of 

classification above 90% to be fulfilled, we define the requirement to be 

fulfilled for a specific temporal interval 𝑖 and level of 𝛿, when:  
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𝐶𝑅𝛿
𝑖 > 0.9(1 − 𝛿). 

Finally, for an empirical approach for assessing the computational 

performance of the online risk assessment, we measured the runtime 

performance for the construction of safety corridors and trajectory 

assessment using a temporal step width Δ = 1𝑠 and a maximal number of 

prediction steps 𝜂𝑚𝑎𝑥 = 10 for different numbers of vertices per corner 

polygon. 

3.3.1.1 Dataset for Validation 

As the validation process requires the knowledge of ground truth, we 

performed the validation on simulator data. To allow for an easier 

comparison with the evaluation results obtained during the second cycle, we 

reused the same test set 𝐷𝑇𝑒𝑠𝑡 as previously described and used in 

Deliverable D3.5 “Concepts and algorithms incl. V&V results from 2nd cycle”. 

Due to the test set arising from a simulator study (a detailed description of 

the experiment is provided in deliverable D2.4 “Sensor Platform and Models 

incl. V&V results from 2nd cycle”) in which the traffic flow was automatically 

controlled by a traffic simulation, the resulting behaviour of traffic 

participants in the vicinity of the TeamMate vehicle is highly predictable and 

unrealistic, leading to overly optimistic results. For a more realistic 

assessment of humanly controlled traffic participants, we therefore 

additionally perform our validation on the safety regions for the humanly 

controlled “TeamMate” vehicle. 
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3.3.1.2 Results 

As the primary result of the validation, Table 5 shows the correct 

classification rate 𝐶𝑅𝛿
𝑖  and mean area �̅�𝛿

𝑖  for the humanly controlled vehicle 

for the different temporal intervals 𝑖 (corresponding to a temporal interval 

[𝑘 + (𝑖 − 1)𝑠: 𝑘 + 𝑖𝑠]) and different levels of δ, using a number of vertices 𝑛𝑃 =

100. Underlined values indicate that the ratio is above 0.9(1 − 𝛿), therefore 

fulfilling R_EN5_alg1.5, the total sum of successes #𝑠 and failures #𝑓 is 

denoted as # (in thousands). The construction of the safety corridors is 

based on a number of 𝑛𝑃 = 100 vertices per corner polygon. As apparent, the 

current version of online risk assessment fulfils requirement R_EN5_alg1.5 

for the whole prediction horizon for 𝛿0.5, 𝛿0.25, and 𝛿0.1, up to eight seconds for 

𝛿0.05 and up to six seconds for 𝛿0.01. 

Table 5: Mean ratio of successes #𝒔 and the sum of successes #𝒔 and failures 

#𝒇 and mean area for human participants (𝚫 = 𝟏𝒔, 𝜼𝒎𝒂𝒙 = 𝟏𝟎, 𝒏𝑷 = 𝟏𝟎𝟎). 

i # 𝐶𝑅𝛿0.5

𝑖  �̅�𝛿0.5

𝑖  𝐶𝑅𝛿0.25

𝑖  �̅�𝛿0.25

𝑖  𝐶𝑅𝛿0.1

𝑖  �̅�𝛿0.0

𝑖  𝐶𝑅𝛿0.05

𝑖  �̅�𝛿0.05

𝑖  𝐶𝑅𝛿0.01

𝑖  �̅�𝛿0.01

𝑖  

1 8528 0.994  73.58 0.999 81.75 1.000 90.08 1.000 95.45 1.000 106.2 

2 8521 0.937 86.88 0.957 101.5 0.969 116.7 0.974 126.7 0.982 146.9 

3 8515 0.879 95.42 0.916 114.8 0.933 135.3 0.940 149.0 0.949 177.2 

4 8508 0.832 105.6 0.884 130.6 0.907 157.6 0.917 175.6 0.928 213.4 

5 8501 0.794 117.5 0.860 145.0 0.886 183.3 0.897 206.5 0.910 255.4 

6 8495 0.765 130.9 0.829 169.9 0.868 212.7 0.881 241.8 0.896 303.5 
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7 8488 0.740 146.0 0.822 193.6 0.854 246.2 0.867 282.2 0.883 358.8 

8 8481 0.720 163.1 0.807 220.4 0.842 284.3 0.856 328.2 0.872 422.0 

9 8474 0.703 182.2 0.794 250.6 0.832 327.4 0.850 380.4 0.864 494.1 

10 8468 0.687 203.7 0.783 284.7 0.823 376.4 0.837 439.8 0.857 576.4 

As a comparison for the quality of the online risk assessment when reducing 

the number of vertices per corner polygon 𝑛𝑃, Table 6 shows the result to 

𝑛𝑃 = 10. Here, R_EN5_alg1.5 is still fulfilled for the whole prediction horizon 

for 𝛿0.5, 𝛿0.25, and 𝛿0.1, but only up to seven seconds for 𝛿0.05 and up to five 

seconds for 𝛿0.01. As such, we would prefer the original number of vertices 

𝑛𝑃 = 100, if allowed by the required execution time. 

Table 6: Mean ratio of successes #𝒔 and the sum of successes #𝒔 and failures 

#𝒇 and mean area for human participants (𝚫 = 𝟏𝒔, 𝜼𝒎𝒂𝒙 = 𝟏𝟎, 𝒏𝑷 = 𝟏𝟎). 

i # 𝐶𝑅𝛿0.5

𝑖  �̅�𝛿0.5

𝑖  𝐶𝑅𝛿0.25

𝑖  �̅�𝛿0.25

𝑖  𝐶𝑅𝛿0.1

𝑖  �̅�𝛿0.0

𝑖  𝐶𝑅𝛿0.05

𝑖  �̅�𝛿0.05

𝑖  𝐶𝑅𝛿0.01

𝑖  �̅�𝛿0.01

𝑖  

1 8528 0.994 73.26 0.999 81.25 1.000 89.39 1.000 94.64 1.000 105.1 

2 8521 0.935 86.26 0.956 100.5 0.968 115.4 0.973 125.0 0981 144.7 

3 8515 0.876 94.50 0.914 113.3 0.932 133.3 0.939 146.5 0.948 173.8 

4 8508 0.825 104.4 0.881 128.7 0.905 154.8 0.912 172.3 0.926 208.7 

5 8501 0.786 116.1 0.855 146.7 0.883 180.0 0.894 202.4 0.919 249.4 

6 8495 0.754 129.3 0.834 167.2 0.865 208.7 0.878 236.8 0.894 296.3 

7 8488 0.728 144.2 0.816 190.4 0.850 241.4 0.864 276.2 0.881 350.0 
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8 8481 0.708 161.0 0.801 216.7 0.838 278.5 0.852 320.9 0.870 411.3 

9 8474 0.690 179.8 0.787 246.3 0.827 320.6 0.842 371.8 0.861 481.3 

10 8468 0.675 200.9 0.776 279.6 0.818 368.2 0.834 429.5 0.854 561.1 

For the sake of comparison with the results reported in D3.5 “Concepts and 

algorithms incl. V&V results from 2nd cycle”, Table 7 shows the results for the 

other traffic participants, controlled by the driving simulation for 𝑛𝑃 = 100, 

Table 8 shows the results for 𝑛𝑃 = 10. As expected, R_EN5_alg1.5 is fulfilled 

for all 𝛿 considered for the complete prediction horizon. 

Table 7: Mean ratio of successes #𝒔 and the sum of successes #𝒔 and failures 

#𝒇 and mean area for automatically controlled traffic participants (𝚫 =

𝟏𝒔, 𝜼𝒎𝒂𝒙 = 𝟏𝟎, 𝒏𝑷 = 𝟏𝟎𝟎). 

i # 𝐶𝑅𝛿0.5

𝑖  �̅�𝛿0.5

𝑖  𝐶𝑅𝛿0.25

𝑖  �̅�𝛿0.25

𝑖  𝐶𝑅𝛿0.1

𝑖  �̅�𝛿0.1

𝑖  𝐶𝑅𝛿0.05

𝑖  �̅�𝛿0.05

𝑖  𝐶𝑅𝛿0.01

𝑖  �̅�𝛿0.01

𝑖  

1 20746 0.994  88.66 0.994 96.35 0.995 104.2 0.995 109.3 0.995 119.7 

2 20176 0.990 108.9 0.991 122.6 0.993 136.7 0.993 146.0 0.994 165.3 

3 19616 0.987 123.4 0.988 141.9 0.989 161.3 0.989 174.2 0.990 201.4 

4 19067 0.983 140.5 0.985 164.7 0.987 190.4 0.987 207.7 0.988 244.2 

5 18531 0.979 160.3 0.983 191.1 0.985 224.1 0.986 246.4 0.988 294.0 

6 18006 0.978 182.7 0.983 221.1 0.985 262.5 0.987 290.6 0.988 350.8 

7 17490 0.979 207.9 0.985 254.9 0.987 305.9 0.988 340.8 0.990 415.5 

8 16984 0.980 236.1 0.987 293.0 0.989 354.9 0.989 397.4 0.990 488.8 
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9 16491 0.981 267.6 0.987 335.6 0.989 410.0 0.990 461.2 0.991 571.5 

10 16007 0.981 302.7 0.987 383.3 0.989 471.7 0.990 532.7 0.991 664.6 

 

Table 8: Mean ratio of successes #𝒔 and the sum of successes #𝒔 and failures 

#𝒇 and mean area for automatically controlled traffic participants (𝚫 =

𝟏𝒔, 𝜼𝒎𝒂𝒙 = 𝟏𝟎, 𝒏𝑷 = 𝟏𝟎). 

i # 𝐶𝑅𝛿0.5

𝑖  �̅�𝛿0.5

𝑖  𝐶𝑅𝛿0.25

𝑖  �̅�𝛿0.25

𝑖  𝐶𝑅𝛿0.1

𝑖  �̅�𝛿0.0

𝑖  𝐶𝑅𝛿0.05

𝑖  �̅�𝛿0.05

𝑖  𝐶𝑅𝛿0.01

𝑖  �̅�𝛿0.01

𝑖  

1 20746 0.994  88.14 0.994 95.66 0.995 103.3 0.995 108.3 0.995 118.5 

2 20176 0.990 107.9 0.991 121.2 0.992 134.9 0.993 144.0 0.994 162.7 

3 19616 0.987 121.8 0.988 139.7 0.989 158.5 0.989 171.0 0.990 197.3 

4 19067 0.982 138.5 0.985 161.9 0.986 186.7 0.987 203.4 0.988 238.6 

5 18531 0.978 157.8 0.982 187.6 0.984 219.5 0.986 241.1 0.987 286.9 

6 18006 0.977 179.8 0.982 217.0 0.985 257.0 0.986 284.1 0.988 342.1 

7 17490 0.977 204.5 0.954 250.1 0.987 299.3 0.988 332.9 0.989 404.9 

8 16984 0.978 232.2 0.986 287.2 0.988 347.0 0.989 388.0 0.990 476.0 

9 16491 0.979 263.0 0.987 328.8 0.989 400.6 0.990 450.0 0.991 556.2 

10 16007 0.979 297.3 0.987 375.3 0.989 460.7 0.990 519.5 0.991 646.4 

 

Runtime Performance 
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For an empirical approach for measuring the computational performance of 

the online risk assessment, we measured the runtime performance for the 

construction of safety corridors and trajectory assessment using a temporal 

step width Δ = 1𝑠 and a maximal number of prediction steps 𝜂𝑚𝑎𝑥 = 10 for 

different numbers of vertices per corner polygon, more specifically 𝑛𝑃 =

10000, 𝑛𝑃 = 1000, 𝑛𝑃 = 100, and 𝑛𝑃 = 10. 

Execution times were calculated as the average of 27000 example executions 

using an i7-6700 CPU @ 3.40GHz, 16GB desktop computer, running a 

Microsoft Windows 10 64-Bit operation system. The algorithms were 

compiled as 64-Bit applications using Visual Studio 2017 and we measured 

individual execution times in nanoseconds using the high_resolution_clock 

provided by the std::chrono library. 

To allow for a better extrapolation to the usually variable number of 

considered objects 𝑛𝑉 in the vicinity of the TeamMate vehicle, we limited the 

assessment to a single object by only measuring the construction of the 

safety corridor for the TeamMate itself. These results measure the 

construction of safety corridors and safety assessment in isolation, and do 

not include the necessary time for the required prediction of the spatial and 

temporal evolution of the traffic scene or graphical user interfaces.  

The results for the construction of the safety corridors are shown in Table 9. 

As apparent, the original selected number of vertices 𝑛𝑃 = 100 per corner 

polygon still allows for a construction of the complete safety corridor below 

1ms per considered object in the vicinity of the TeamMate vehicle. 

Extrapolating these results, this would allow for the construction of safety 

corridors in the presence of up to 𝑛𝑉 = 20 considered objects within the 
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duration of approx. 10ms, which fits well into the intended frequency of 

execution of 10Hz.  

Table 9: Average computation time for the construction of safety corridors 

for a single object for different number of vertices per corner polygon. 

Number of vertices per corner polygon Average computation time (ms) 

10000 64.109 

1000 5.168 

100 0.525 

10 0.111 

To assess the runtime performance of trajectory assessment, we created 

random trajectories, consisting of 𝑛𝑅 = 100 points over a temporal length of 

10𝑠 by sampling the coordinates and yaw angles from a zero mean normal 

distribution with standard deviation 𝜎 = 100 and measured the average time 

for the assessment of this trajectory when using different number of vertices 

per corner polygon. To assess the worst-case scenario, trajectory 

assessment was not aborted once the trajectory was assessed as unsafe. As 

for the construction of the safety corridors, we measured the time using the 

safety corridors of a single object. The results are shown in Table 10. 

Table 10: Average computation time for trajectory assessment against the 

safety corridors of a single object for different number of vertices per corner 

polygon. 

Number of vertices per corner polygon Average computation time (ms) 
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10000 3.604 

1000 0.368 

100 0.046 

10 0.012 

Extrapolating these results, the original selected number of vertices 𝑛𝑃 = 100 

per corner polygon would allow for trajectory assessment in the presence of 

up to 𝑛𝑉 = 20 considered objects within the duration of just 1ms. 

Privacy Issues 

Finally, addressing requirement R_EN5_alg1.7, the algorithms for online risk 

assessment in respect to other traffic participants do not process or retrieve 

any personal data of the driver. 

3.3.1.3 State of the Art 

In the context of intelligent driving systems, the notion of risk assessment is 

commonly associated with the idea “that a situation may be dangerous for 

the driver, i.e. may result in harm or injury” [12]. Approaches for risk 

assessment have been broadly classified into two families [12], approaches 

that relate risk to unexpected behaviour of traffic participants and 

approaches that relate risk with potential physical collisions between entities 

(e.g., vehicles) in the traffic scene.  

Concerning the former, [13] represented the nominal behaviour of driver by 

Gaussian mixture models which could then be used to detect “unusual” 

situations by assessing the likelihood of a driver’s behaviour. [14] proposed 
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to compare expectations about a driver’s behaviour with estimated 

intentions, which allows the computation of the probability of a mismatch 

between expectation and intentions to indicate risk. Unfortunately, such 

approaches only allow to assess whether a situation is critical, but provide no 

additional information concerning the exact circumstances. 

Approaches that associate risk with potential collisions usually combine a 

prediction of future trajectories for all entities in the traffic scene with the 

assessment of these trajectories to detect potential collisions [12]. Many of 

such approaches in the literature focus on “Time-To-X” measures, e.g., the 

“Time-To-Collision”, representing the remaining time to a collision under the 

assumption of constant velocities, or “Time-To-React” measures, 

representing e.g., the remaining time to initiate a braking or steering 

manoeuvre, which can be used as an indication of what action should be 

taken or to identify the least dangerous intervention manoeuvre [12].  

For assessing whether a future trajectory of the driver or the automation is 

safe, the most popular measure of risk is based on the notion of the 

probability of collision [15], [16], [17], [18] based on the predicted 

trajectories of the driver and other traffic participants, which we adopted for 

online risk assessment in AutoMate. Assessing the probability of collision 

under uncertainty requires the integration over all possible trajectories and 

dimensions of all traffic participants [15], [16], [17], [18]. Due to the 

unsolvable nature of this integration in closed form, one must usually resort 

to Monte Carlo methods, limiting the real-time capacity of such approaches. 

Unfortunately, actual computation times are seldom reported. [15] limited 

the prediction horizon to a maximum of three seconds to achieve real-time 
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capacity. [17] considered predictions up to four seconds by limiting the 

number of samples to a very low number of just 100. [18] proposed a novel 

approach, suitable if all vehicles are perfectly aligned with the road, that 

enables online risk assessment via testing for collisions of pairs of 

trajectories with average computation times of approx. just 0.007ms for 

each tested pair. Unfortunately, when dealing with uncertainties, one must 

once again resort to Monte Carlo methods, cancelling the computational 

advantages. 

Although based on the same probability of collision, our approach for online 

risk assessment differs from these approaches by transforming the prediction 

of the temporal and spatial evolution of the traffic scene into polygonal 

safety corridors over time spans, removing the need for integration. The 

transformation comes with the caveat of an inability to provide an “exact” 

probability of collision for a given trajectory. Our safety corridors only 

provide the upper bound on the probability of collision, allowing the 

assessment whether a trajectory is safe in relation to a desired probability of 

collision. We argue however that an “exact” assessment is unnecessary, if it 

finally used to test it against a threshold, in which case this inability is of no 

effect. When testing against a threshold is sufficient, our approach allows the 

assessment of trajectories without the need for Monte Carlo methods, 

allowing for a much greater prediction horizon (e.g., 10s) and traffic density 

than the state of the art. 

3.3.2 Safety Corridor between Road Boundaries 

As documented in D3.5, in the second cycle we used Intersection Over Union 

(IOU) to quantify the quality of the extracted safety corridor. Therefore, we 
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consider the same metric during third cycle for validation of the extracted 

safety corridor between road boundaries. IOU measures the amount of 

overlap with respect to the ground truth information, as defined in Equation 

1: 

Equation 1: Definition of Intersection over Union. 

𝐼𝑂𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where TP, FP and FN are true positive, false positive and false negative, 

respectively. 

During D3.6, we have introduced Precision and Recall as new metrics to 

evaluate the performance of the algorithm that asses planned trajectories for 

risk. These metrics specifically target the verification/validation of 

requirements R_EN5_alg1.5 and R_EN5_alg1.6. 

As defined in Equation 2, Precision provides the positive predictive rate and 

Recall measures the ability to classify the relevant instances. 

Equation 2: Definition of Precision and Recall. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Finally, with respect to runtime of the implemented algorithm, the average 

execution time is provided. 
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3.3.2.1 Dataset for Validation 

Validation of our algorithm was performed on test data provided by 

Vedecom. The structure of the Digital Map representing road networks was 

specified in a common agreement between DLR and Vedecom. To give an 

impression of the data format involved, Figure 7 shows a screenshot of the 

Digital Map information available for the component. The single fields are 

documented in Table 11 below this figure. 

 

Figure 7: Digital Map Information from Vedecom. 

 

Table 11: Description of the Digital Map’s Fields 

ID Road point ID 

Nblanes Number of lanes at the particular road point 

Availability Availability of lane in Driving direction  

• 0 –Not available 

• 1 – Available  
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Half width(m) Half the entire width of the lane  

Speed max(km/h) Associated max speed for particular lane  

Right/Left marking Right and left lane marking associated to the lane  

• 1-Solid Lane marking 

• 0-Dashed Lane marking 

Heading(rad) Heading of the each road point at the particular Road 

ID  

 

For validating the safety corridor extraction between road boundaries as 

specified in the D3.5, the IOU metric is used on the Vedecom test data. This 

data set, denoted as DVedecom, was recorded within the scope of the Digital 

Map. It contains the following variables: 

- TeamMate’s position in UTM 

- Unix timestamp for synchronization 

- heading of the TeamMate car 

- absolute velocity of the vehicle 

- uncertainties in the positon of the vehicle 

Further, to show the sensitivity of the safety corridor extraction between 

road boundaries, towards the uncertainty of the vehicle position and 

requested POC, we synthesised a new test data (Dsynthetic) by varying the 

position uncertainty in the Vedecom test data and different POC 
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requirements. The test trajectories were generated by fitting random 

extrapolation functions between reference points. Considering both the test 

data allowed us to perform an unbiased validation of the component.  

As specified in D3.6 we have proposed Precision and Recall as the new 

metrics to provide the validation measures for assessing the risk of planned 

trajectories. 

3.3.2.2 Results 

 

Figure 8: Validation results on Vedecom Test data (DVedecom), IOU vs. POC. 
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Due to very low lateral uncertainty (.02 m) in the position of the TeamMate’s 

vehicle, the resulting shift value, which determines the amount of shifting 

required to obtain risk assessed safety corridor under the requested POC 

results is negligible. To recap the shift value is the result of inverse CDF for a 

particular quantile, which is computed using the requested POC. The CDF is 

modelled using the vehicle position and the uncertainty in the position of the 

vehicle. Therefore, the shift due to the uncertainty at different POC’s is very 

small, this explains why the IOU is nearly 100 percent for different POC.  

As stated earlier, to perform an unbiased validation, new test data was 

synthesised on top of the test data received from Vedecom. Where the 

uncertainty involved in the position of the vehicle varied, which is the prime 

factor that determines the degree of shifting necessary to satisfy for different 

POC’s and to obtain risk assessed safety corridor. Figure 17 shows the effect 

*of IOU with respect to the uncertainty involved in the position of the 

vehicle. 

From Figure 9, we can notice that the IOU at POC ~0.35 varies for different 

uncertainty in the vehicle position. In comparison to the results shown in 

Figure 8, IOU is not anymore 100 percent. This clearly explains the 

component is sensitive to the position uncertainty of the TeamMate vehicle. 

Referring to the requirement table in D1.5 the algorithm implemented for 

extracting safety corridor between road boundaries by taking into account 

the uncertainties and requested POC ensures the results to be always safe 

and acceptable. This fulfils the requirement R_EN5_alg1.2.  

To show the sensitivity of the GPS information, we had to consider different 

uncertainties to emphasise the effect of extracted safety corridor information 
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with respect to the uncertainties of the received GPS signal. However, in the 

obtained test data (real data), the uncertainty in the GPS position was 

negligible. Henceforth, the IOU remains almost same for different requested 

POC.   

 

 

Figure 9: IOU vs. POC plot on synthesised data (Dsynthetic). The blue, green 

and red curves denote the IOUs obtained for different uncertainties in 

vehicle position at 1 m, .5 m, and .25 m, respectively. 
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Regarding the online risk assessment of the planned trajectories as described 

in the section Safety Corridor between Road Boundaries, the performance 

metrics of the assessment algorithm is shown in Table 12. Precision and 

Recall of the trajectory risk assessment is always 100 percent, due to the 

extracted safety corridor’s sensitivity to the uncertainty of the vehicle 

position.  

From the test data we have seen that the uncertainty of the vehicle position 

is relatively small and henceforth the extracted safety corridor between the 

road boundaries is almost the same as the road boundary corridor. 

Therefore, all the planned trajectories (i.e. the Ground Truth) that are safe 

will be classified as safe by the assessment algorithm, which results in very 

high Precision. And also the 100 percent Recall justifies all the planned 

trajectories are covered when assessing or risk at particular timestamp. 

Table 12: Precision and Recall by the Online risk assessment for planned 

trajectories. 

Precision 1.0. 

Recall 1.0 

Runtime Performance 

Release version of the component was measured for its execution time on 

the development machine for ensuring requirement R_EN5_alg1.3 from 

D1.5. The component was able to extract a safety corridor and asses the 

planned trajectories at a frequency of ~15 milliseconds on an Intel core 

i7-6820HQ cpu @ 2.50ghz.  



AutoMate Automation as accepted and trusted TeamMate to enhance  

traffic safety and efficiency 

 

<17/10/2019> Named Distribution Only 

Proj. No: 690705 

Page 71 of 78 

 

Finally, addressing requirement R_EN5_alg1.7, the algorithm pipeline to 

extract the safety boundary corridor between road boundaries and risk 

assessment of planned trajectories, does not process or retrieve any 

personal data of the driver. 

3.3.2.3 State of the Art 

The fundamental functionality of online risk assessment methods is the safe 

navigation of the Autonomous Vehicles (AV), both for single driving as well 

as when interacting with other road users. This is mainly performed by the 

Trajectory Planner [19]. 

Via the data collected by the sensors installed in the vehicle and 

infrastructure, and topological information (e.g. from open source maps), 

both dynamic and contextual (road information) inputs are obtained to 

ensure providing reliable data to the trajectory planner.  

As a framework to create an inference out of these inputs, Dynamic Bayesian 

Networks are often used. This method is able to overcome uncertainties of 

the data delivered by these embedded systems such as noise, delays and 

missing input. Furthermore, so called surrogate safety measures are taken 

into account to evaluate the criticality of both the current status of the Ego 

vehicle with respect to the environment and the purposed paths by the 

Trajectory Planner [20].  

 

Building upon this state of the art, our computation of the safety corridor 

works as follows. Using a wanted Probability of Collision (POC) and the 

uncertainty of the position from the GPS receiver, a normal distribution is 
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modelled. Considering the POC as a weight to influence the uncertainty 

coefficient, a safety corridor for the Ego Vehicle is assessed.  

As an enhanced measure for estimating the risk of the purposed trajectories 

of the Trajectory Planner, this generated corridor (based on the contextual 

information above mentioned) is later on used together with the Time to 

Collision (TTC) and Distance to Collision (DTC) surrogate safety metrics. This 

allows establishing a likelihood hierarchy among the selected paths. 

[21] have also suggested such a modification of the traditional approach to 

trajectory planning. In addition to using TTC alone as a risk parameter, each 

node of the set of possible future trajectories is taken as a reference to 

compute the surrogate measures. 

As [20] further mention, innovative research should try to overcome the 

limitations of TTC, where linear references are taken into account to estimate 

the risk. This might lead to uncertainties and false positives involving the 

collision avoidance system. Currently ongoing as well as planned 

improvements to the Safety Corridor between Road Boundaries submodule 

are addressing this issue. This involves a linear discretizing of the planned 

curved paths, to yield a more accurate TTC estimation. 
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4 Conclusions  

All enablers in WP3 (E4.1, E4.2 and E5.1) have been developed to implement 

the A2H cooperation, both in action and in perception.  

The planning and execution of trajectories enabler has experienced big 

change to provide well planned trajectories incorporating driver models while 

also being real time capable. 

The module for Learning of intention from driver has been greatly improved 

to handle updating of complex distributions present in the DIR model and to 

generate labelled samples required for processing of observed data while 

driving. 

Finally, the concept for the online risk assessment was modified to directly 

assess the safety of provided trajectories with respect to a boundary Safety 

Corridor and surrounding dynamic object while keeping a low computation 

time.   

All enabler are ready for the final integration into the demonstrators of the 

third cycle. 

Lessons learnt 

• E4.2 

o To address the Cold start problem related to the Learning of 

intention from driver during the first project cycle it proved 

helpful for testing and validating the concept to have already 
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some driving and lane change data obtained during the former 

EU project HoliDes. 

o For a real world application it could be expected that the 

TeamMate car is used by multiple drivers. This case is currently 

not handled by Learning of Intention from driver but there are 

basically two options, either to adapt a single driver model 

rapidly to a new driver or to store multiple driver models. The 

first option would require that new evidence is weighted much 

higher than older observations, or that only recent observations 

from a certain time frame are considered for the creation of the 

model, like the approach from [11]. However, this would also 

mean that old knowledge becomes irrelevant in a way that model 

parameters for a previous driver basically have to be relearned 

after another driver has used the car. The second option would 

enable the system to remember previous drivers but would also 

require some kind of driver identification. The most simple driver 

identification could be implemented by using separate keys for 

individual drivers, which is already used by manufactures to 

store individual settings for, e.g., comfort functions. Other 

options would be to give the driver a possibility to register at the 

system, e.g., via a username or by using a smartphone, to 

identify the driver by the driving behaviour [22] or by sensors 

inside the car, e.g., the camera of the TeamMate driver 

monitoring system. 

• E5.1 
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o For the development and simulation in the first cycle, synthetic 

data had been used. This data was then replaced by real data 

recorded by the partner VED on their test track. 
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